1887

Abstract

Quorum sensing is a cell density-dependent gene expression mechanism found in many Gram-negative bacteria which involves the production of signal molecules such as -acylhomoserine lactones (AHLs). One significant group of micro-organisms in which quorum sensing has not been previously studied, however, are the moderate halophiles. We describe here the results of our studies of the quorum-sensing system in FP35, which is composed of / homologues: (the putative transcriptional regulator gene) and (the autoinducer synthase gene). To understand how the / system is organized and regulated we conducted RT-PCR and quantitative real-time PCR assays. Transcriptional analysis indicated that the and genes are on the same transcript and that their transcription is growth phase-dependent. HanI seems to be the only autoinducer synthase responsible for the synthesis of AHLs by the bacterium, since the inactivation of resulted in the complete loss of its AHLs. We also found that the gene appears to be transcribed from its own promoter and that its expression does not depend upon HanR. This finding was supported by the fact that the FP35 mutant showed AHL-producing activity and expression similar to that of the wild-type strain, the latter being measured by RT-PCR. Moreover, is expressed from its own promoter and appears to be independent of the AHL signalling molecules produced by HanI.

Funding
This study was supported by the:
  • , Spanish Ministerio de Educación y Ciencia , (Award AGL2009-07656 and CGL2008-02399/BOS)
  • , Consejería de Educación Ciencia y Empresa, of the Andalucian Regional Government , (Award P06-CVI-01850)
  • , Plan Andaluz de Investigación
  • , Junta de Andalucía
Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.052167-0
2011-12-01
2020-11-30
Loading full text...

Full text loading...

/deliver/fulltext/micro/157/12/3378.html?itemId=/content/journal/micro/10.1099/mic.0.052167-0&mimeType=html&fmt=ahah

References

  1. Andersson R. A., Eriksson A. R., Heikinheimo R., Mäe A., Pirhonen M., Kõiv V., Hyytiäinen H., Tuikkala A., Palva E. T. ( 2000). Quorum sensing in the plant pathogen Erwinia carotovora subsp. carotovora: the role of expR(Ecc). Mol Plant Microbe Interact 13:384–393 [CrossRef][PubMed]
    [Google Scholar]
  2. Boyer M., Wisniewski-Dyé F. ( 2009). Cell-cell signalling in bacteria: not simply a matter of quorum. FEMS Microbiol Ecol 70:1–19 [CrossRef][PubMed]
    [Google Scholar]
  3. Chen X., Schauder S., Potier N., Van Dorsselaer A., Pelczer I., Bassler B. L., Hughson F. M. ( 2002). Structural identification of a bacterial quorum-sensing signal containing boron. Nature 415:545–549 [CrossRef][PubMed]
    [Google Scholar]
  4. Christensen A. B., Riedel K., Eberl L., Flodgaard L. R., Molin S., Gram L., Givskov M. ( 2003). Quorum-sensing-directed protein expression in Serratia proteamaculans B5a. Microbiology 149:471–483 [CrossRef][PubMed]
    [Google Scholar]
  5. Davies D. G., Parsek M. R., Pearson J. P., Iglewski B. H., Costerton J. W., Greenberg E. P. ( 1998). The involvement of cell-to-cell signals in the development of a bacterial biofilm. Science 280:295–298 [CrossRef][PubMed]
    [Google Scholar]
  6. de Kievit T. R., Iglewski B. H. ( 2000). Bacterial quorum sensing in pathogenic relationships. Infect Immun 68:4839–4849 [CrossRef][PubMed]
    [Google Scholar]
  7. de Lorenzo V., Herrero M., Jakubzik U., Timmis K. N. ( 1990). Mini-Tn5 transposon derivatives for insertion mutagenesis, promoter probing, and chromosomal insertion of cloned DNA in Gram-negative eubacteria. J Bacteriol 172:6568–6572[PubMed]
    [Google Scholar]
  8. Defoirdt T., Boon N., Sorgeloos P., Verstraete W., Bossier P. & other authors ( 2008). Quorum sensing and quorum quenching in Vibrio harveyi: lessons learned from in vivo work. ISME J 2:19–26 [CrossRef][PubMed]
    [Google Scholar]
  9. Devescovi G., Bigirimana J., Degrassi G., Cabrio L., LiPuma J. J., Kim J., Hwang I., Venturi V. ( 2007). Involvement of a quorum-sensing-regulated lipase secreted by a clinical isolate of Burkholderia glumae in severe disease symptoms in rice. Appl Environ Microbiol 73:4950–4958 [CrossRef][PubMed]
    [Google Scholar]
  10. Diggle S. P., Griffin A. S., Campbell G. S., West S. A. ( 2007). Cooperation and conflict in quorum-sensing bacterial populations. Nature 450:411–414 [CrossRef][PubMed]
    [Google Scholar]
  11. Eberhard A., Longin T., Widrig C. A., Stranick S. J. ( 1991). Synthesis of the lux gene autoinducer in Vibrio fischeri is positively autoregulated. Arch Microbiol 155:294–297 [CrossRef]
    [Google Scholar]
  12. Engebrecht J., Silverman M. ( 1984). Identification of genes and gene products necessary for bacterial bioluminescence. Proc Natl Acad Sci U S A 81:4154–4158 [CrossRef][PubMed]
    [Google Scholar]
  13. Euzéby J. P. ( 2010). List of Prokaryotic Names with Standing in Nomenclature. http://www.bacterio.cict.fr
  14. Farrand S. K. ( 1998). Conjugation in Rhizobiaceae. The Rhizobiaceae, Molecular Biology of Model Plant-Associated Bacteria199–233 Spaink H. P., Kondorosi A., Hooykaas P. J. J. Dordrecht: Kluwer Academic;
    [Google Scholar]
  15. Fuqua W. C., Winans S. C., Greenberg E. P. ( 1994). Quorum sensing in bacteria: the LuxR-LuxI family of cell density-responsive transcriptional regulators. J Bacteriol 176:269–275[PubMed]
    [Google Scholar]
  16. Fuqua C., Parsek M. R., Greenberg E. P. ( 2001). Regulation of gene expression by cell-to-cell communication: acyl-homoserine lactone quorum sensing. Annu Rev Genet 35:439–468 [CrossRef][PubMed]
    [Google Scholar]
  17. González J. E., Keshavan N. D. ( 2006). Messing with bacterial quorum sensing. Microbiol Mol Biol Rev 70:859–875 [CrossRef][PubMed]
    [Google Scholar]
  18. González J. E., Marketon M. M. ( 2003). Quorum sensing in nitrogen-fixing rhizobia. Microbiol Mol Biol Rev 67:574–592 [CrossRef][PubMed]
    [Google Scholar]
  19. Gray K. M., Passador L., Iglewski B. H., Greenberg E. P. ( 1994). Interchangeability and specificity of components from the quorum-sensing regulatory systems of Vibrio fischeri and Pseudomonas aeruginosa. J Bacteriol 176:3076–3080[PubMed]
    [Google Scholar]
  20. Hoang H. H., Becker A., González J. E. ( 2004). The LuxR homolog ExpR, in combination with the Sin quorum sensing system, plays a central role in Sinorhizobium meliloti gene expression. J Bacteriol 186:5460–5472 [CrossRef][PubMed]
    [Google Scholar]
  21. Horng Y. T., Deng S. C., Daykin M., Soo P. C., Wei J. R., Luh K. T., Ho S. W., Swift S., Lai H. C., Williams P. ( 2002). The LuxR family protein SpnR functions as a negative regulator of N-acylhomoserine lactone-dependent quorum sensing in Serratia marcescens. Mol Microbiol 45:1655–1671 [CrossRef][PubMed]
    [Google Scholar]
  22. Iida A., Ohnishi Y., Horinouchi S. ( 2008). Control of acetic acid fermentation by quorum sensing via N-acylhomoserine lactones in Gluconacetobacter intermedius. J Bacteriol 190:2546–2555 [CrossRef][PubMed]
    [Google Scholar]
  23. Kalogeraki V. S., Winans S. C. ( 1997). Suicide plasmids containing promoterless reporter genes can simultaneously disrupt and create fusions to target genes of diverse bacteria. Gene 188:69–75 [CrossRef][PubMed]
    [Google Scholar]
  24. Khan S. R., Herman J., Krank J., Serkova N. J., Churchill M. E. A., Suga H., Farrand S. K. ( 2007). N-(3-hydroxyhexanoyl)-l-homoserine lactone is the biologically relevant quormone that regulates the phz operon of Pseudomonas chlororaphis strain 30-84. Appl Environ Microbiol 73:7443–7455 [CrossRef][PubMed]
    [Google Scholar]
  25. Letunic I., Copley R. R., Pils B., Pinkert S., Schultz J., Bork P. ( 2006). smart 5: domains in the context of genomes and networks. Nucleic Acids Res 34:Database issueD257–D260 [CrossRef][PubMed]
    [Google Scholar]
  26. Licciardello G., Bertani I., Steindler L., Bella P., Venturi V., Catara V. ( 2007). Pseudomonas corrugata contains a conserved N-acyl homoserine lactone quorum sensing system; its role in tomato pathogenicity and tobacco hypersensitivity response. FEMS Microbiol Ecol 61:222–234 [CrossRef][PubMed]
    [Google Scholar]
  27. Llamas I., del Moral A., Béjar V., Girón M. D., Salto R., Quesada E. ( 1997). Plasmids from Halomonas eurihalina, a microorganism which produces an exopolysaccharide of biotechnological interest. FEMS Microbiol Lett 156:251–257 [CrossRef]
    [Google Scholar]
  28. Llamas I., Argandoña M., Quesada E., del Moral A. ( 2000). Transposon mutagenesis in Halomonas eurihalina. Res Microbiol 151:13–18 [CrossRef][PubMed]
    [Google Scholar]
  29. Llamas I., Suárez A., Quesada E., Béjar V., del Moral A. ( 2003). Identification and characterization of the carAB genes responsible for encoding carbamoylphosphate synthetase in Halomonas eurihalina. Extremophiles 7:205–211[PubMed]
    [Google Scholar]
  30. Llamas I., Keshavan N., González J. E. ( 2004). Use of Sinorhizobium meliloti as an indicator for specific detection of long-chain N-acyl homoserine lactones. Appl Environ Microbiol 70:3715–3723 [CrossRef][PubMed]
    [Google Scholar]
  31. Llamas I., Quesada E., Martínez-Cánovas M. J., Gronquist M., Eberhard A., González J. E. ( 2005). Quorum sensing in halophilic bacteria: detection of N-acyl-homoserine lactones in the exopolysaccharide-producing species of Halomonas. Extremophiles 9:333–341 [CrossRef][PubMed]
    [Google Scholar]
  32. Malott R. J., Baldwin A., Mahenthiralingam E., Sokol P. A. ( 2005). Characterization of the cciIR quorum-sensing system in Burkholderia cenocepacia. Infect Immun 73:4982–4992 [CrossRef][PubMed]
    [Google Scholar]
  33. Marketon M. M., González J. E. ( 2002). Identification of two quorum-sensing systems in Sinorhizobium meliloti. J Bacteriol 184:3466–3475 [CrossRef][PubMed]
    [Google Scholar]
  34. Marketon M. M., Gronquist M. R., Eberhard A., González J. E. ( 2002). Characterization of the Sinorhizobium meliloti sinR/sinI locus and the production of novel N-acyl homoserine lactones. J Bacteriol 184:5686–5695 [CrossRef][PubMed]
    [Google Scholar]
  35. Marketon M. M., Glenn S. A., Eberhard A., González J. E. ( 2003). Quorum sensing controls exopolysaccharide production in Sinorhizobium meliloti. J Bacteriol 185:325–331 [CrossRef][PubMed]
    [Google Scholar]
  36. Martínez-Cánovas M. J., Béjar V., Martínez-Checa F., Quesada E. ( 2004). Halomonas anticariensis sp. nov., from Fuente de Piedra, a saline-wetland wildfowl reserve in Malaga, southern Spain. Int J Syst Evol Microbiol 54:1329–1332 [CrossRef][PubMed]
    [Google Scholar]
  37. McClean K. H., Winson M. K., Fish L., Taylor A., Chhabra S. R., Camara M., Daykin M., Lamb J. H., Swift S. et al. ( 1997). Quorum sensing and Chromobacterium violaceum: exploitation of violacein production and inhibition for the detection of N-acylhomoserine lactones. Microbiology 143:3703–3711 [CrossRef][PubMed]
    [Google Scholar]
  38. McIntosh M., Meyer S., Becker A. ( 2009). Novel Sinorhizobium meliloti quorum sensing positive and negative regulatory feedback mechanisms respond to phosphate availability. Mol Microbiol 74:1238–1256 [CrossRef][PubMed]
    [Google Scholar]
  39. McNab R., Ford S. K., El-Sabaeny A., Barbieri B., Cook G. S., Lamont R. J. ( 2003). LuxS-based signaling in Streptococcus gordonii: autoinducer 2 controls carbohydrate metabolism and biofilm formation with Porphyromonas gingivalis. J Bacteriol 185:274–284 [CrossRef][PubMed]
    [Google Scholar]
  40. Miller J. ( 1972). Experiments in Molecular Genetics Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  41. Miller V. L., Mekalanos J. J. ( 1988). A novel suicide vector and its use in construction of insertion mutations: osmoregulation of outer membrane proteins and virulence determinants in Vibrio cholerae requires toxR. J Bacteriol 170:2575–2583[PubMed]
    [Google Scholar]
  42. Moraine R. A., Rogovin P. ( 1966). Kinetics of polysaccharide B-1459 fermentation. Biotechnol Bioeng 8:511–524 [CrossRef]
    [Google Scholar]
  43. Morohoshi T., Nakamura Y., Yamazaki G., Ishida A., Kato N., Ikeda T. ( 2007). The plant pathogen Pantoea ananatis produces N-acylhomoserine lactone and causes center rot disease of onion by quorum sensing. J Bacteriol 189:8333–8338 [CrossRef][PubMed]
    [Google Scholar]
  44. Nasser W., Bouillant M. L., Salmond G., Reverchon S. ( 1998). Characterization of the Erwinia chrysanthemi expIexpR locus directing the synthesis of two N-acyl-homoserine lactone signal molecules. Mol Microbiol 29:1391–1405 [CrossRef][PubMed]
    [Google Scholar]
  45. Newman J. R., Fuqua C. ( 1999). Broad-host-range expression vectors that carry the l-arabinose-inducible Escherichia coli araBAD promoter and the araC regulator. Gene 227:197–203 [CrossRef][PubMed]
    [Google Scholar]
  46. Ng W. L., Bassler B. L. ( 2009). Bacterial quorum-sensing network architectures. Annu Rev Genet 43:197–222 [CrossRef][PubMed]
    [Google Scholar]
  47. Nieto J. J., Fernández-Castillo R., Márquez M. C., Ventosa A., Quesada E., Ruíz-Berraquero F. ( 1989). Survey of metal tolerance in moderately halophilic eubacteria. Appl Environ Microbiol 55:2385–2390[PubMed]
    [Google Scholar]
  48. Niu C., Clemmer K. M., Bonomo R. A., Rather P. N. ( 2008). Isolation and characterization of an autoinducer synthase from Acinetobacter baumannii. J Bacteriol 190:3386–3392 [CrossRef][PubMed]
    [Google Scholar]
  49. Ochman H., Gerber A. S., Hartl D. L. ( 1988). Genetic applications of an inverse polymerase chain reaction. Genetics 120:621–623[PubMed]
    [Google Scholar]
  50. Parker C. T., Sperandio V. ( 2009). Cell-to-cell signalling during pathogenesis. Cell Microbiol 11:363–369 [CrossRef][PubMed]
    [Google Scholar]
  51. Patankar A. V., González J. E. ( 2009). Orphan LuxR regulators of quorum sensing. FEMS Microbiol Rev 33:739–756 [CrossRef][PubMed]
    [Google Scholar]
  52. Pfaffl M. W., Horgan G. W., Dempfle L. ( 2002). Relative expression software tool (REST) for group-wise comparison and statistical analysis of relative expression results in real-time PCR. Nucleic Acids Res 30:e36 [CrossRef][PubMed]
    [Google Scholar]
  53. Pirhonen M., Flego D., Heikinheimo R., Palva E. T. ( 1993). A small diffusible signal molecule is responsible for the global control of virulence and exoenzyme production in the plant pathogen Erwinia carotovora. EMBO J 12:2467–2476[PubMed]
    [Google Scholar]
  54. Pumbwe L., Skilbeck C. A., Wexler H. M. ( 2008). Presence of quorum-sensing systems associated with multidrug resistance and biofilm formation in Bacteroides fragilis. Microb Ecol 56:412–419 [CrossRef][PubMed]
    [Google Scholar]
  55. Rodríguez-Valera F., Ruíz-Berraquero F., Ramos-Cormenzana A. ( 1981). Characteristics of the heterotrophic bacterial populations in hypersaline environments of different salt concentrations. Microb Ecol 7:235–243 [CrossRef]
    [Google Scholar]
  56. Sambrook J., Russell D. W. ( 2001). Molecular Cloning: a Laboratory Manual Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  57. Schaefer A. L., Greenberg E. P., Oliver C. M., Oda Y., Huang J. J., Bittan-Banin G., Peres C. M., Schmidt S., Juhaszova K. et al. & other authors ( 2008). A new class of homoserine lactone quorum-sensing signals. Nature 454:595–599 [CrossRef][PubMed]
    [Google Scholar]
  58. Shaw P. D., Ping G., Daly S. L., Cha C., Cronan J. E. Jr, Rinehart K. L., Farrand S. K. ( 1997). Detecting and characterizing N-acyl-homoserine lactone signal molecules by thin-layer chromatography. Proc Natl Acad Sci U S A 94:6036–6041 [CrossRef][PubMed]
    [Google Scholar]
  59. Song Y., Xie C., Ong Y.-M., Gan Y.-H., Chua K.-L. ( 2005). The BpsIR quorum-sensing system of Burkholderia pseudomallei. J Bacteriol 187:785–790 [CrossRef][PubMed]
    [Google Scholar]
  60. Spaink H. P., Wijffelman C. A., Pees E., Okker R. J. H., Lugtenberg B. J. J. ( 1987). Rhizobium nodulation gene nodD as a determinant of host specificity. Nature 328:337–340 [CrossRef]
    [Google Scholar]
  61. Subramoni S., Venturi V. ( 2009). LuxR-family ‘solos’: bachelor sensors/regulators of signalling molecules. Microbiology 155:1377–1385 [CrossRef][PubMed]
    [Google Scholar]
  62. Sutherland I. W. ( 2002). Polysaccharides from prokaryotes. Biopolymers. Polysaccharides I1–19 Vandamme E. J., De Baets S., Steinbüchel A. Weinheim: Wiley-VCH;
    [Google Scholar]
  63. Taga M. E., Bassler B. L. ( 2003). Chemical communication among bacteria. Proc Natl Acad Sci U S A 100:Suppl 214549–14554 [CrossRef][PubMed]
    [Google Scholar]
  64. Throup J. P., Cámara M., Briggs G., Winson M. K., Bycroft B. W., Williams P., Stewart G. S. ( 1995). Characterisation of the yenI/yenR locus from Yersinia enterocolitica mediating the synthesis of two N-acylhomoserine lactone signal molecules. Mol Microbiol 17:345–356 [CrossRef][PubMed]
    [Google Scholar]
  65. Urbanczyk H., Ast J. C., Higgins M. J., Carson J., Dunlap P. V. ( 2007). Reclassification of Vibrio fischeri, Vibrio logei, Vibrio salmonicida and Vibrio wodanis as Aliivibrio fischeri gen. nov., comb. nov., Aliivibrio logei comb. nov., Aliivibrio salmonicida comb. nov. and Aliivibrio wodanis comb. nov. Int J Syst Evol Microbiol 57:2823–2829 [CrossRef][PubMed]
    [Google Scholar]
  66. Van Houdt R., Moons P., Aertsen A., Jansen A., Vanoirbeek K., Daykin M., Williams P., Michiels C. W. ( 2007). Characterization of a luxI/luxR-type quorum sensing system and N-acyl-homoserine lactone-dependent regulation of exo-enzyme and antibacterial component production in Serratia plymuthica RVH1. Res Microbiol 158:150–158 [CrossRef][PubMed]
    [Google Scholar]
  67. von Bodman S. B., Majerczak D. R., Coplin D. L. ( 1998). A negative regulator mediates quorum-sensing control of exopolysaccharide production in Pantoea stewartii subsp. stewartii. Proc Natl Acad Sci U S A 95:7687–7692 [CrossRef][PubMed]
    [Google Scholar]
  68. von Bodman S. B., Bauer W. D., Coplin D. L. ( 2003). Quorum sensing in plant-pathogenic bacteria. Annu Rev Phytopathol 41:455–482 [CrossRef][PubMed]
    [Google Scholar]
  69. Wang L. H., He Y., Gao Y., Wu J. E., Dong Y. H., He C., Wang S. X., Weng L. X., Xu J. L. et al. & other authors ( 2004). A bacterial cell–cell communication signal with cross-kingdom structural analogues. Mol Microbiol 51:903–912 [CrossRef][PubMed]
    [Google Scholar]
  70. Watson W. T., Minogue T. D., Val D. L., von Bodman S. B., Churchill M. E. ( 2002). Structural basis and specificity of acyl-homoserine lactone signal production in bacterial quorum sensing. Mol Cell 9:685–694 [CrossRef][PubMed]
    [Google Scholar]
  71. Whitehead N. A., Barnard A. M., Slater H., Simpson N. J., Salmond G. P. ( 2001). Quorum-sensing in Gram-negative bacteria. FEMS Microbiol Rev 25:365–404 [CrossRef][PubMed]
    [Google Scholar]
  72. Winson M. K., Swift S., Fish L., Throup J. P., Jørgensen F., Chhabra S. R., Bycroft B. W., Williams P., Stewart G. S. ( 1998). Construction and analysis of luxCDABE-based plasmid sensors for investigating N-acyl homoserine lactone-mediated quorum sensing. FEMS Microbiol Lett 163:185–192 [CrossRef][PubMed]
    [Google Scholar]
  73. Zheng H., Zhong Z., Lai X., Chen W.-X., Li S., Zhu J. ( 2006). A LuxR/LuxI-type quorum-sensing system in a plant bacterium, Mesorhizobium tianshanense, controls symbiotic nodulation. J Bacteriol 188:1943–1949 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.052167-0
Loading
/content/journal/micro/10.1099/mic.0.052167-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF

Supplementary material 2

PDF

Supplementary material 3

PDF

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error