1887

Abstract

is a Gram-negative strictly aerobic bacterium that is widely used for the industrial production of vinegar. Three strains, SKU1108, NBRC 3283 and IFO 3191, have the same 16S rRNA sequence (100 % sequence identity) but show differences in thermotolerance. To clarify the relationships between phylogeny and thermotolerance of these strains, genome-wide analysis of these three strains was performed. Concatenated phylogenetic analysis of a dataset of 1864 orthologues has shown that the more thermotolerant strains, SKU1108 and NBRC 3283, are more closely related to each other than to the more thermosensitive strain, IFO 3191. In addition, we defined a dataset of 2010 unique orthologues among these three strains, and compared the frequency of amino acid mutations among them. Genes involved in translation, transcription and signal transduction are highly conserved among each unique orthologous dataset. The results also showed that there are several genes with increased mutation rates in IFO 3191 compared with the thermotolerant strains, SKU1108 and NBRC 3283. Analysis of the mutational directions of these genes suggested that some of them might be correlated with the thermosensitivity of IFO 3191. Concatenated phylogenetic analysis of these closely related strains revealed that there is a phylogenetic relationship associated with this phenotype among the thermotolerant and thermosensitive strains.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.052134-0
2012-01-01
2020-08-14
Loading full text...

Full text loading...

/deliver/fulltext/micro/158/1/229.html?itemId=/content/journal/micro/10.1099/mic.0.052134-0&mimeType=html&fmt=ahah

References

  1. Adékambi T., Drancourt M.. ( 2004;). Dissection of phylogenetic relationships among 19 rapidly growing Mycobacterium species by 16S rRNA, hsp65, sodA, recA and rpoB gene sequencing. Int J Syst Evol Microbiol54:2095–2105 [CrossRef][PubMed]
    [Google Scholar]
  2. Altschul S. F., Madden T. L., Schäffer A. A., Zhang J., Zhang Z., Miller W., Lipman D. J.. ( 1997;). Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res25:3389–3402 [CrossRef][PubMed]
    [Google Scholar]
  3. Azuma Y., Hosoyama A., Matsutani M., Furuya N., Horikawa H., Harada T., Hirakawa H., Kuhara S., Matsushita K.. & other authors ( 2009;). Whole-genome analyses reveal genetic instability of Acetobacter pasteurianus. Nucleic Acids Res37:5768–5783 [CrossRef][PubMed]
    [Google Scholar]
  4. Bertalan M., Albano R., de Pádua V., Rouws L., Rojas C., Hemerly A., Teixeira K., Schwab S., Araujo J.. & other authors ( 2009;). Complete genome sequence of the sugarcane nitrogen-fixing endophyte Gluconacetobacter diazotrophicus Pal5. BMC Genomics10:450 [CrossRef][PubMed]
    [Google Scholar]
  5. Butler J., MacCallum I., Kleber M., Shlyakhter I. A., Belmonte M. K., Lander E. S., Nusbaum C., Jaffe D. B.. ( 2008;). ALLPATHS: de novo assembly of whole-genome shotgun microreads. Genome Res18:810–820 [CrossRef][PubMed]
    [Google Scholar]
  6. Delcher A. L., Kasif S., Fleischmann R. D., Peterson J., White O., Salzberg S. L.. ( 1999;). Alignment of whole genomes. Nucleic Acids Res27:2369–2376 [CrossRef][PubMed]
    [Google Scholar]
  7. Delcher A. L., Phillippy A., Carlton J., Salzberg S. L.. ( 2002;). Fast algorithms for large-scale genome alignment and comparison. Nucleic Acids Res30:2478–2483 [CrossRef][PubMed]
    [Google Scholar]
  8. Delcher A. L., Bratke K. A., Powers E. C., Salzberg S. L.. & other authors ( 2007;). Identifying bacterial genes and endosymbiont DNA with Glimmer. Bioinformatics23:673–679 [CrossRef][PubMed]
    [Google Scholar]
  9. Dohm J. C., Lottaz C., Borodina T., Himmelbauer H.. ( 2007;). SHARCGS, a fast and highly accurate short-read assembly algorithm for de novo genomic sequencing. Genome Res17:1697–1706 [CrossRef][PubMed]
    [Google Scholar]
  10. Farrer R. A., Kemen E., Jones J. D., Studholme D. J.. ( 2009;). De novo assembly of the Pseudomonas syringae pv. syringae B728a genome using Illumina/Solexa short sequence reads. FEMS Microbiol Lett291:103–111 [CrossRef][PubMed]
    [Google Scholar]
  11. Gontcharov A. A., Marin B., Melkonian M.. ( 2004;). Are combined analyses better than single gene phylogenies? A case study using SSU rDNA and rbcL sequence comparisons in the Zygnematophyceae (Streptophyta). Mol Biol Evol21:612–624 [CrossRef][PubMed]
    [Google Scholar]
  12. Holt R. A., Jones S. J.. ( 2008;). The new paradigm of flow cell sequencing. Genome Res18:839–846 [CrossRef][PubMed]
    [Google Scholar]
  13. Kanchanarach W., Theeragool G., Inoue T., Yakushi T., Adachi O., Matsushita K.. ( 2010a;). Acetic acid fermentation of Acetobacter pasteurianus: relationship between acetic acid resistance and pellicle polysaccharide formation. Biosci Biotechnol Biochem74:1591–1597 [CrossRef][PubMed]
    [Google Scholar]
  14. Kanchanarach W., Theeragool G., Yakushi T., Toyama H., Adachi O., Matsushita K.. ( 2010b;). Characterization of thermotolerant Acetobacter pasteurianus strains and their quinoprotein alcohol dehydrogenases. Appl Microbiol Biotechnol85:741–751 [CrossRef][PubMed]
    [Google Scholar]
  15. Konstantinidis K. T., Tiedje J. M.. ( 2005;). Towards a genome-based taxonomy for prokaryotes. J Bacteriol187:6258–6264 [CrossRef][PubMed]
    [Google Scholar]
  16. Kurtz S., Phillippy A., Delcher A. L., Smoot M., Shumway M., Antonescu C., Salzberg S. L.. ( 2004;). Versatile and open software for comparing large genomes. Genome Biol5:R12 [CrossRef][PubMed]
    [Google Scholar]
  17. Larkin M. A., Blackshields G., Brown N. P., Chenna R., McGettigan P. A., McWilliam H., Valentin F., Wallace I. M., Wilm A. et al. ( 2007;). clustal w and clustal_x version 2.0. Bioinformatics23:2947–2948 [CrossRef][PubMed]
    [Google Scholar]
  18. MacLean D., Jones J. D., Studholme D. J.. ( 2009;). Application of ‘next-generation’ sequencing technologies to microbial genetics. Nat Rev Microbiol7:287–296[PubMed]
    [Google Scholar]
  19. Mardis E. R.. ( 2008;). Next-generation DNA sequencing methods. Annu Rev Genomics Hum Genet9:387–402 [CrossRef][PubMed]
    [Google Scholar]
  20. Matsutani M., Hirakawa H., Yakushi T., Matsushita K.. ( 2011;). Genome-wide phylogenetic analysis of Gluconobacter, Acetobacter, and Gluconacetobacter. FEMS Microbiol Lett315:122–128 [CrossRef][PubMed]
    [Google Scholar]
  21. Medini D., Donati C., Tettelin H., Masignani V., Rappuoli R.. ( 2005;). The microbial pan-genome. Curr Opin Genet Dev15:589–594 [CrossRef][PubMed]
    [Google Scholar]
  22. Morse R., O’Hanlon K., Collins M. D.. ( 2002;). Phylogenetic, amino acid content and indel analyses of the β subunit of DNA-dependent RNA polymerase of Gram-positive and Gram-negative bacteria. Int J Syst Evol Microbiol52:1477–1484 [CrossRef][PubMed]
    [Google Scholar]
  23. Murata M., Fujimoto H., Nishimura K., Charoensuk K., Nagamitsu H., Raina S., Kosaka T., Oshima T., Ogasawara N., Yamada M.. ( 2011;). Molecular strategy for survival at a critical high temperature in Escherichia coli. PLoS ONE6:e20063 [CrossRef][PubMed]
    [Google Scholar]
  24. Prust C., Hoffmeister M., Liesegang H., Wiezer A., Fricke W. F., Ehrenreich A., Gottschalk G., Deppenmeier U.. ( 2005;). Complete genome sequence of the acetic acid bacterium Gluconobacter oxydans. Nat Biotechnol23:195–200 [CrossRef][PubMed]
    [Google Scholar]
  25. Rokas A., Williams B. L., King N., Carroll S. B.. ( 2003;). Genome-scale approaches to resolving incongruence in molecular phylogenies. Nature425:798–804 [CrossRef][PubMed]
    [Google Scholar]
  26. Saeki A., Theeragool G., Matsushita K., Toyama H., Adachi O.. ( 1997;). Development of thermotolerant acetic acid bacteria useful for vinegar fermentation at higher temperatures. Biosci Biotechnol Biochem61:138–145 [CrossRef]
    [Google Scholar]
  27. Salzberg S. L., Delcher A. L., Kasif S., White O.. ( 1998;). Microbial gene identification using interpolated Markov models. Nucleic Acids Res26:544–548 [CrossRef][PubMed]
    [Google Scholar]
  28. Sievers M., Teuber M.. ( 1995;). The microbiology and taxonomy of Acetobacter europaeus in commercial vinegar production. J Appl Bacteriol79:84–95
    [Google Scholar]
  29. Soemphol W., Deeraksa A., Matsutani M., Yakushi T., Toyama H., Adachi O., Yamada M., Matsushita K.. ( 2011;). Global analysis of the genes involved in the thermotolerance mechanism of thermotolerant Acetobacter tropicalis SKU1100. Biosci Biotechnol Biochem75:1921–1928 [CrossRef][PubMed]
    [Google Scholar]
  30. Stackebrandt E., Frederiksen W., Garrity G. M., Grimont P. A., Kämpfer P., Maiden M. C., Nesme X., Rosselló-Mora R., Swings J.. & other authors ( 2002;). Report of the ad hoc committee for the re-evaluation of the species definition in bacteriology. Int J Syst Evol Microbiol52:1043–1047 [CrossRef][PubMed]
    [Google Scholar]
  31. Stothard P., Wishart D. S.. ( 2005;). Circular genome visualization and exploration using CGView. Bioinformatics21:537–539 [CrossRef][PubMed]
    [Google Scholar]
  32. Tamura K., Dudley J., Nei M., Kumar S.. ( 2007;). MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. Mol Biol Evol24:1596–1599 [CrossRef][PubMed]
    [Google Scholar]
  33. Tamura K., Peterson D., Peterson N., Stecher G., Nei M., Kumar S.. ( 2011;). MEGA5: Molecular Evolutionary Genetics Analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol28:2731–2739 [CrossRef][PubMed]
    [Google Scholar]
  34. Tatusov R. L., Koonin E. V., Lipman D. J.. ( 1997;). A genomic perspective on protein families. Science278:631–637 [CrossRef][PubMed]
    [Google Scholar]
  35. Tatusov R. L., Fedorova N. D., Jackson J. D., Jacobs A. R., Kiryutin B., Koonin E. V., Krylov D. M., Mazumder R., Mekhedov S. L.. & other authors ( 2003;). The COG database: an updated version includes eukaryotes. BMC Bioinformatics4:41 [CrossRef][PubMed]
    [Google Scholar]
  36. Tettelin H., Masignani V., Cieslewicz M. J., Donati C., Medini D., Ward N. L., Angiuoli S. V., Crabtree J., Jones A. L.. & other authors ( 2005;). Genome analysis of multiple pathogenic isolates of Streptococcus agalactiae: implications for the microbial “pan-genome”. Proc Natl Acad Sci U S A102:13950–13955 [CrossRef][PubMed]
    [Google Scholar]
  37. van der Veen S., Abee T., de Vos W. M., Wells-Bennik M. H.. ( 2009;). Genome-wide screen for Listeria monocytogenes genes important for growth at high temperatures. FEMS Microbiol Lett295:195–203 [CrossRef][PubMed]
    [Google Scholar]
  38. Warren R. L., Sutton G. G., Jones S. J., Holt R. A.. ( 2007;). Assembling millions of short DNA sequences using SSAKE. Bioinformatics23:500–501 [CrossRef][PubMed]
    [Google Scholar]
  39. Yamamoto S., Harayama S.. ( 1998;). Phylogenetic relationships of Pseudomonas putida strains deduced from the nucleotide sequences of gyrB, rpoD and 16S rRNA genes. Int J Syst Bacteriol48:813–819 [CrossRef][PubMed]
    [Google Scholar]
  40. Zerbino D. R., Birney E.. ( 2008;). Velvet: algorithms for de novo short read assembly using de Bruijn graphs. Genome Res18:821–829 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.052134-0
Loading
/content/journal/micro/10.1099/mic.0.052134-0
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error