Low oxygen induces the type III secretion system in via modulation of the small RNAs and Free

Abstract

A steep oxygen gradient within the mucus of the ystic ibrosis (CF) lung combined with the biofilm mode of bacterial growth forces respiratory pathogens to adapt to varying oxygen availability. This study presents the novel finding that the response to limiting oxygen stress includes induction of its ype III ecretion ystem (T3SS), which subsequently contributes towards host cell cytotoxicity. In , the global anaerobic response regulator Anr perceives low oxygen and subsequently triggers gene expression of a range of target genes, including the response regulator . Here we demonstrate that microaerobic induction of the T3SS is dependent on Anr, and that this is mediated through direct NarL transcriptional repression of the sRNAs and , allowing free RsmA protein to positively regulate the T3SS. This study reveals a novel interplay between the Anr–NarL and RsmAYZ regulatory circuits, and introduces RsmA as an important regulator during adaptation to a low-oxygen environment.

Funding
This study was supported by the:
  • European Commission (Award MTKD-CT-2006-042062; O36341)
  • Marie Curie TOK:TRAMWAYS
  • Science Foundation of Ireland (Award 09/RFP/BMT2350, 08/RFP/GEN1295 and SFI 07/IN.I/B948)
  • Department of Agriculture and Food (Award DAF RSF 06 377 and DAF RSF 06 321)
  • Irish Research Council for Science, Engineering and Technology
  • IRCSET (Award 05/EDIV/FP107/INTERPAM)
  • Health Research Board (Award RP; HRA/2009/146, RP/2007/290, RP/2006/271 and RP/2004/145)
  • Environmental Protection Agency (Award EPA 2006-PhD-S-21)
  • Higher Education Authority of Ireland (Award PRTL4 and PRTLI3)
Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.052050-0
2011-12-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/micro/157/12/3417.html?itemId=/content/journal/micro/10.1099/mic.0.052050-0&mimeType=html&fmt=ahah

References

  1. Alvarez-Ortega C., Harwood C. S. ( 2007). Responses of Pseudomonas aeruginosa to low oxygen indicate that growth in the cystic fibrosis lung is by aerobic respiration. Mol Microbiol 65:153–165 [View Article][PubMed]
    [Google Scholar]
  2. Ando H., Abe H., Sugimoto N., Tobe T. ( 2007). Maturation of functional type III secretion machinery by activation of anaerobic respiration in enterohaemorrhagic Escherichia coli. . Microbiology 153:464–473 [View Article][PubMed]
    [Google Scholar]
  3. Becher A., Schweizer H. P. ( 2000). Integration-proficient Pseudomonas aeruginosa vectors for isolation of single-copy chromosomal lacZ and lux gene fusions. Biotechniques 29:948–950, 952[PubMed]
    [Google Scholar]
  4. Benkert B., Quäck N., Schreiber K., Jaensch L., Jahn D., Schobert M. ( 2008). Nitrate-responsive NarX-NarL represses arginine-mediated induction of the Pseudomonas aeruginosa arginine fermentation arcDABC operon. Microbiology 154:3053–3060 [View Article][PubMed]
    [Google Scholar]
  5. Boucher R. C. ( 2004). New concepts of the pathogenesis of cystic fibrosis lung disease. Eur Respir J 23:146–158 [View Article][PubMed]
    [Google Scholar]
  6. Brencic A., Lory S. ( 2009). Determination of the regulon and identification of novel mRNA targets of Pseudomonas aeruginosa RsmA. Mol Microbiol 72:612–632 [View Article][PubMed]
    [Google Scholar]
  7. Cowell B. A., Evans D. J., Fleiszig S. M. ( 2005). Actin cytoskeleton disruption by ExoY and its effects on Pseudomonas aeruginosa invasion. FEMS Microbiol Lett 250:71–76 [View Article][PubMed]
    [Google Scholar]
  8. Figurski D. H., Helinski D. R. ( 1979). Replication of an origin-containing derivative of plasmid RK2 dependent on a plasmid function provided in trans . Proc Natl Acad Sci U S A 76:1648–1652 [View Article][PubMed]
    [Google Scholar]
  9. Fink R. C., Evans M. R., Porwollik S., Vazquez-Torres A., Jones-Carson J., Troxell B., Libby S. J., McClelland M., Hassan H. M. ( 2007). FNR is a global regulator of virulence and anaerobic metabolism in Salmonella enterica serovar Typhimurium (ATCC 14028s). J Bacteriol 189:2262–2273 [View Article][PubMed]
    [Google Scholar]
  10. Fung C., Naughton S., Turnbull L., Tingpej P., Rose B., Arthur J., Hu H., Harmer C., Harbour C. et al. & other authors ( 2010). Gene expression of Pseudomonas aeruginosa in a mucin-containing synthetic growth medium mimicking cystic fibrosis lung sputum. J Med Microbiol 59:1089–1100 [View Article][PubMed]
    [Google Scholar]
  11. Garrity-Ryan L., Kazmierczak B., Kowal R., Comolli J., Hauser A., Engel J. N. ( 2000). The arginine finger domain of ExoT contributes to actin cytoskeleton disruption and inhibition of internalization of Pseudomonas aeruginosa by epithelial cells and macrophages. Infect Immun 68:7100–7113 [View Article][PubMed]
    [Google Scholar]
  12. Geiser T. K., Kazmierczak B. I., Garrity-Ryan L. K., Matthay M. A., Engel J. N. ( 2001). Pseudomonas aeruginosa ExoT inhibits in vitro lung epithelial wound repair. Cell Microbiol 3:223–236 [View Article][PubMed]
    [Google Scholar]
  13. Goodman A. L., Kulasekara B., Rietsch A., Boyd D., Smith R. S., Lory S. ( 2004). A signaling network reciprocally regulates genes associated with acute infection and chronic persistence in Pseudomonas aeruginosa. . Dev Cell 7:745–754 [View Article][PubMed]
    [Google Scholar]
  14. Hassett D. J., Cuppoletti J., Trapnell B., Lymar S. V., Rowe J. J., Yoon S. S., Hilliard G. M., Parvatiyar K., Kamani M. C. et al. & other authors ( 2002). Anaerobic metabolism and quorum sensing by Pseudomonas aeruginosa biofilms in chronically infected cystic fibrosis airways: rethinking antibiotic treatment strategies and drug targets. Adv Drug Deliv Rev 54:1425–1443 [View Article][PubMed]
    [Google Scholar]
  15. Hauser A. R. ( 2009). The type III secretion system of Pseudomonas aeruginosa: infection by injection. Nat Rev Microbiol 7:654–665 [View Article][PubMed]
    [Google Scholar]
  16. Hauser A. R., Cobb E., Bodi M., Mariscal D., Vallés J., Engel J. N., Rello J. ( 2002). Type III protein secretion is associated with poor clinical outcomes in patients with ventilator-associated pneumonia caused by Pseudomonas aeruginosa. . Crit Care Med 30:521–528 [View Article][PubMed]
    [Google Scholar]
  17. Hoang T. T., Karkhoff-Schweizer R. R., Kutchma A. J., Schweizer H. P. ( 1998). A broad-host-range Flp-FRT recombination system for site-specific excision of chromosomally-located DNA sequences: application for isolation of unmarked Pseudomonas aeruginosa mutants. Gene 212:77–86 [View Article][PubMed]
    [Google Scholar]
  18. Hoboth C., Hoffmann R., Eichner A., Henke C., Schmoldt S., Imhof A., Heesemann J., Hogardt M. ( 2009). Dynamics of adaptive microevolution of hypermutable Pseudomonas aeruginosa during chronic pulmonary infection in patients with cystic fibrosis. J Infect Dis 200:118–130 [View Article][PubMed]
    [Google Scholar]
  19. Humair B., Wackwitz B., Haas D. ( 2010). GacA-controlled activation of promoters for small RNA genes in Pseudomonas fluorescens. . Appl Environ Microbiol 76:1497–1506 [View Article][PubMed]
    [Google Scholar]
  20. Imhof A., Heinzer I. ( 1996). Continuous monitoring of oxygen concentrations in several systems for cultivation of anaerobic bacteria. J Clin Microbiol 34:1646–1648[PubMed]
    [Google Scholar]
  21. Jacobs M. A., Alwood A., Thaipisuttikul I., Spencer D., Haugen E., Ernst S., Will O., Kaul R., Raymond C. et al. & other authors ( 2003). Comprehensive transposon mutant library of Pseudomonas aeruginosa. . Proc Natl Acad Sci U S A 100:14339–14344 [View Article][PubMed]
    [Google Scholar]
  22. Kay E., Humair B., Dénervaud V., Riedel K., Spahr S., Eberl L., Valverde C., Haas D. ( 2006). Two GacA-dependent small RNAs modulate the quorum-sensing response in Pseudomonas aeruginosa. . J Bacteriol 188:6026–6033 [View Article][PubMed]
    [Google Scholar]
  23. Kovach M. E., Elzer P. H., Hill D. S., Robertson G. T., Farris M. A., Roop R. M. II, Peterson K. M. ( 1995). Four new derivatives of the broad-host-range cloning vector pBBR1MCS, carrying different antibiotic-resistance cassettes. Gene 166:175–176 [View Article][PubMed]
    [Google Scholar]
  24. Laskowski M. A., Osborn E., Kazmierczak B. I. ( 2004). A novel sensor kinase–response regulator hybrid regulates type III secretion and is required for virulence in Pseudomonas aeruginosa. . Mol Microbiol 54:1090–1103 [View Article][PubMed]
    [Google Scholar]
  25. Liberati N. T., Urbach J. M., Miyata S., Lee D. G., Drenkard E., Wu G., Villanueva J., Wei T., Ausubel F. M. ( 2006). An ordered, nonredundant library of Pseudomonas aeruginosa strain PA14 transposon insertion mutants. Proc Natl Acad Sci U S A 103:2833–2838 [View Article][PubMed]
    [Google Scholar]
  26. Marteyn B., West N. P., Browning D. F., Cole J. A., Shaw J. G., Palm F., Mounier J., Prévost M. C., Sansonetti P., Tang C. M. ( 2010). Modulation of Shigella virulence in response to available oxygen in vivo . Nature 465:355–358 [View Article][PubMed]
    [Google Scholar]
  27. Matsui H., Wagner V. E., Hill D. B., Schwab U. E., Rogers T. D., Button B., Taylor R. M. II, Superfine R., Rubinstein M. et al. & other authors ( 2006). A physical linkage between cystic fibrosis airway surface dehydration and Pseudomonas aeruginosa biofilms. Proc Natl Acad Sci U S A 103:18131–18136 [View Article][PubMed]
    [Google Scholar]
  28. Mena A., Smith E. E., Burns J. L., Speert D. P., Moskowitz S. M., Perez J. L., Oliver A. & other authors ( 2008). Genetic adaptation of Pseudomonas aeruginosa to the airways of cystic fibrosis patients is catalyzed by hypermutation. J Bacteriol 190:7910–7917 [View Article][PubMed]
    [Google Scholar]
  29. Mooij M. J., O’Connor H. F., Tian Z. X., Wang Y. P., Adams C., Morrissey J. P., O’Gara F. ( 2010). Antibiotic selection leads to inadvertent selection of nfxC-type phenotypic mutants in Pseudomonas aeruginosa. . Environ Microbiol 2:461–464 [View Article]
    [Google Scholar]
  30. Mulcahy H., O’Callaghan J., O’Grady E. P., Adams C., O’Gara F. ( 2006). The posttranscriptional regulator RsmA plays a role in the interaction between Pseudomonas aeruginosa and human airway epithelial cells by positively regulating the type III secretion system. Infect Immun 74:3012–3015 [View Article][PubMed]
    [Google Scholar]
  31. Palmer K. L., Brown S. A., Whiteley M. ( 2007). Membrane-bound nitrate reductase is required for anaerobic growth in cystic fibrosis sputum. J Bacteriol 189:4449–4455 [View Article][PubMed]
    [Google Scholar]
  32. Pessi G., Haas D. ( 2000). Transcriptional control of the hydrogen cyanide biosynthetic genes hcnABC by the anaerobic regulator ANR and the quorum-sensing regulators LasR and RhlR in Pseudomonas aeruginosa. . J Bacteriol 182:6940–6949 [View Article][PubMed]
    [Google Scholar]
  33. Pessi G., Williams F., Hindle Z., Heurlier K., Holden M. T., Cámara M., Haas D., Williams P. ( 2001). The global posttranscriptional regulator RsmA modulates production of virulence determinants and N-acylhomoserine lactones in Pseudomonas aeruginosa. . J Bacteriol 183:6676–6683 [View Article][PubMed]
    [Google Scholar]
  34. Sawers R. G. ( 1991). Identification and molecular characterization of a transcriptional regulator from Pseudomonas aeruginosa PAO1 exhibiting structural and functional similarity to the FNR protein of Escherichia coli. . Mol Microbiol 5:1469–1481 [View Article][PubMed]
    [Google Scholar]
  35. Schreiber K., Krieger R., Benkert B., Eschbach M., Arai H., Schobert M., Jahn D. ( 2007). The anaerobic regulatory network required for Pseudomonas aeruginosa nitrate respiration. J Bacteriol 189:4310–4314 [View Article][PubMed]
    [Google Scholar]
  36. Schüller S., Phillips A. D. ( 2010). Microaerobic conditions enhance type III secretion and adherence of enterohaemorrhagic Escherichia coli to polarized human intestinal epithelial cells. Environ Microbiol 12:2426–2435 [View Article][PubMed]
    [Google Scholar]
  37. Sharma V., Noriega C. E., Rowe J. J. ( 2006). Involvement of NarK1 and NarK2 proteins in transport of nitrate and nitrite in the denitrifying bacterium Pseudomonas aeruginosa PAO1. Appl Environ Microbiol 72:695–701 [View Article][PubMed]
    [Google Scholar]
  38. Smith E. E., Buckley D. G., Wu Z., Saenphimmachak C., Hoffman L. R., D’Argenio D. A., Miller S. I., Ramsey B. W., Speert D. P. et al. ( 2006). Genetic adaptation by Pseudomonas aeruginosa to the airways of cystic fibrosis patients. Proc Natl Acad Sci U S A 103:8487–8492 [View Article][PubMed]
    [Google Scholar]
  39. Spaink H. P., Okker R. J. H., Wijffelman C. A., Pees E., Lugtenberg B. J. J. ( 1987). Promoters in the nodulation region of the Rhizobium leguminosarum Sym plasmid pRL1J1. Plant Mol Biol 9:27–39 [View Article]
    [Google Scholar]
  40. Stewart P. S., Franklin M. J. ( 2008). Physiological heterogeneity in biofilms. Nat Rev Microbiol 6:199–210 [View Article][PubMed]
    [Google Scholar]
  41. Swinger K. K., Rice P. A. ( 2004). IHF and HU: flexible architects of bent DNA. Curr Opin Struct Biol 14:28–35 [View Article][PubMed]
    [Google Scholar]
  42. Tian Z. X., Mac Aogáin M., O’Connor H. F., Fargier E., Mooij M. J., Adams C., Wang Y. P., O’Gara F. ( 2009). MexT modulates virulence determinants in Pseudomonas aeruginosa independent of the MexEF-OprN efflux pump. Microb Pathog 47:237–241 [View Article][PubMed]
    [Google Scholar]
  43. Trunk K., Benkert B., Quäck N., Münch R., Scheer M., Garbe J., Jänsch L., Trost M., Wehland J. et al. & other authors ( 2010). Anaerobic adaptation in Pseudomonas aeruginosa: definition of the Anr and Dnr regulons. Environ Microbiol 12:1719–1733 [View Article][PubMed]
    [Google Scholar]
  44. Tyson K. L., Bell A. I., Cole J. A., Busby S. J. ( 1993). Definition of nitrite and nitrate response elements at the anaerobically inducible Escherichia coli nirB promoter: interactions between FNR and NarL. Mol Microbiol 7:151–157 [View Article][PubMed]
    [Google Scholar]
  45. Ventre I., Goodman A. L., Vallet-Gely I., Vasseur P., Soscia C., Molin S., Bleves S., Lazdunski A., Lory S., Filloux A. ( 2006). Multiple sensors control reciprocal expression of Pseudomonas aeruginosa regulatory RNA and virulence genes. Proc Natl Acad Sci U S A 103:171–176 [View Article][PubMed]
    [Google Scholar]
  46. Waite R. D., Curtis M. A. ( 2009). Pseudomonas aeruginosa PAO1 pyocin production affects population dynamics within mixed-culture biofilms. J Bacteriol 191:1349–1354 [View Article][PubMed]
    [Google Scholar]
  47. Wolfgang M. C., Lee V. T., Gilmore M. E., Lory S. ( 2003). Coordinate regulation of bacterial virulence genes by a novel adenylate cyclase-dependent signaling pathway. Dev Cell 4:253–263 [View Article][PubMed]
    [Google Scholar]
  48. Worlitzsch D., Tarran R., Ulrich M., Schwab U., Cekici A., Meyer K. C., Birrer P., Bellon G., Berger J. et al. & other authors ( 2002). Effects of reduced mucus oxygen concentration in airway Pseudomonas infections of cystic fibrosis patients. J Clin Invest 109:317–325[PubMed] [CrossRef]
    [Google Scholar]
  49. Yoon S. S., Hennigan R. F., Hilliard G. M., Ochsner U. A., Parvatiyar K., Kamani M. C., Allen H. L., DeKievit T. R., Gardner P. R., Schwab U. ( 2002). Pseudomonas aeruginosa anaerobic respiration in biofilms: relationships to cystic fibrosis pathogenesis. Dev Cell 3:593–603 [View Article][PubMed]
    [Google Scholar]
  50. Zhang X., Bremer H. ( 1995). Control of the Escherichia coli rrnB P1 promoter strength by ppGpp. J Biol Chem 270:11181–11189 [CrossRef]
    [Google Scholar]
  51. Zimmermann A., Reimmann C., Galimand M., Haas D. ( 1991). Anaerobic growth and cyanide synthesis of Pseudomonas aeruginosa depend on anr, a regulatory gene homologous with fnr of Escherichia coli. . Mol Microbiol 5:1483–1490 [View Article][PubMed]
    [Google Scholar]
  52. Zolfaghar I., Angus A. A., Kang P. J., To A., Evans D. J., Fleiszig S. M. ( 2005). Mutation of retS, encoding a putative hybrid two-component regulatory protein in Pseudomonas aeruginosa, attenuates multiple virulence mechanisms. Microbes Infect 7:1305–1316 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.052050-0
Loading
/content/journal/micro/10.1099/mic.0.052050-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF

Supplementary material 2

PDF

Supplementary material 3

PDF

Most cited Most Cited RSS feed