1887

Abstract

NAD and NADP are ubiquitous in the metabolism of K-12. NAD auxotrophy can be rendered by mutation in any of the three genes , and . The and genes were defined as antivirulence loci in spp., as a mutation (mainly in ) disrupting the synthesis of quinolinate is required for virulence. Uropathogenic (UPEC) isolates from acute cystitis patients, exhibiting nicotinamide auxotrophy, were of serotype O18 : K1 : H7. UTI89, the model uropathogenic and O18 : K1 : H7 strain, requires nicotinamide or quinolinate for growth. A mutation in the gene, encoding -aspartate oxidase, was shown to be responsible for the nicotinamide requirement of UTI89. This was further confirmed by complementation of UTI89 with a recombinant plasmid harbouring the gene of K-12. An Ala28Val point mutant of the recombinant plasmid failed to support the growth of UTI89 in minimal medium. This proves that the Ala28Val mutation in the NadB gene of UTI89 completely impedes synthesis of nicotinamide. In spontaneous prototrophic revertants of UTI89, the gene has a Val28Ala mutation. Both analyses implicate that the nicotinamide auxotrophy of UTI89 is caused by a single Ala28Val mutation in NadB. We showed that the same mutation is also present in other NAD auxotrophic O18 strains. No significant differences were observed between the virulence of isogenic NAD auxotrophic and prototrophic strains in the murine ascending urinary tract infection model. Considering these data, we applied the locus as a neutral site for DNA insertions in the bacterial chromosome. We successfully restored the parental phenotype of a mutant by inserting with a synthetic promoter, into the gene. This neutral insertion site is of significance for further research on the pathogenicity of UPEC.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.052043-0
2012-03-01
2024-04-25
Loading full text...

Full text loading...

/deliver/fulltext/micro/158/3/736.html?itemId=/content/journal/micro/10.1099/mic.0.052043-0&mimeType=html&fmt=ahah

References

  1. Achtman M., Mercer A., Kusecek B., Pohl A., Heuzenroeder M., Aaronson W., Sutton A., Silver R. P. ( 1983). Six widespread bacterial clones among Escherichia coli K1 isolates. Infect Immun 39:315–335[PubMed]
    [Google Scholar]
  2. Bahrani-Mougeot F. K., Buckles E. L., Lockatell C. V., Hebel J. R., Johnson D. E., Tang C. M., Donnenberg M. S. ( 2002). Type 1 fimbriae and extracellular polysaccharides are preeminent uropathogenic Escherichia coli virulence determinants in the murine urinary tract. Mol Microbiol 45:1079–1093 [View Article][PubMed]
    [Google Scholar]
  3. Bergthorsson U., Roth J. R. ( 2005). Natural isolates of Salmonella enterica serovar Dublin carry a single nadA missense mutation. J Bacteriol 187:400–403 [View Article][PubMed]
    [Google Scholar]
  4. Beuzón C. R., Holden D. W. ( 2001). Use of mixed infections with Salmonella strains to study virulence genes and their interactions in vivo . Microbes Infect 3:1345–1352 [View Article][PubMed]
    [Google Scholar]
  5. Bossi R. T., Negri A., Tedeschi G., Mattevi A. ( 2002). Structure of FAD-bound l-aspartate oxidase: insight into substrate specificity and catalysis. Biochemistry 41:3018–3024 [View Article][PubMed]
    [Google Scholar]
  6. Chen S. L., Hung C. S., Xu J., Reigstad C. S., Magrini V., Sabo A., Blasiar D., Bieri T., Meyer R. R. & other authors ( 2006). Identification of genes subject to positive selection in uropathogenic strains of Escherichia coli: a comparative genomics approach. Proc Natl Acad Sci U S A 103:5977–5982 [View Article][PubMed]
    [Google Scholar]
  7. Choi K. H., Schweizer H. P. ( 2006). Mini-Tn7 insertion in bacteria with single attTn7 sites: example Pseudomonas aeruginosa . Nat Protoc 1:153–161 [View Article][PubMed]
    [Google Scholar]
  8. Colson C., Glover S. W., Symonds N., Stacey K. A. ( 1965). The location of the genes for host-controlled modification and restriction in Escherichia coli K-12. Genetics 52:1043–1050[PubMed]
    [Google Scholar]
  9. Craig N. L. ( 1991). Tn7: a target site-specific transposon. Mol Microbiol 5:2569–2573 [View Article][PubMed]
    [Google Scholar]
  10. Cusumano C. K., Hung C. S., Chen S. L., Hultgren S. J. ( 2010). Virulence plasmid harbored by uropathogenic Escherichia coli functions in acute stages of pathogenesis. Infect Immun 78:1457–1467 [View Article][PubMed]
    [Google Scholar]
  11. Datsenko K. A., Wanner B. L. ( 2000). One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc Natl Acad Sci U S A 97:6640–6645 [View Article][PubMed]
    [Google Scholar]
  12. Emori T. G., Gaynes R. P. ( 1993). An overview of nosocomial infections, including the role of the microbiology laboratory. Clin Microbiol Rev 6:428–442[PubMed]
    [Google Scholar]
  13. Hannan T. J., Mysorekar I. U., Hung C. S., Isaacson-Schmid M. L., Hultgren S. J. ( 2010). Early severe inflammatory responses to uropathogenic E. coli predispose to chronic and recurrent urinary tract infection. PLoS Pathog 6:e1001042 [View Article][PubMed]
    [Google Scholar]
  14. Hochhut B., Wilde C., Balling G., Middendorf B., Dobrindt U., Brzuszkiewicz E., Gottschalk G., Carniel E., Hacker J. ( 2006). Role of pathogenicity island-associated integrases in the genome plasticity of uropathogenic Escherichia coli strain 536. Mol Microbiol 61:584–595 [View Article][PubMed]
    [Google Scholar]
  15. Holden N. J., Totsika M., Mahler E., Roe A. J., Catherwood K., Lindner K., Dobrindt U., Gally D. L. ( 2006). Demonstration of regulatory cross-talk between P fimbriae and type 1 fimbriae in uropathogenic Escherichia coli . Microbiology 152:1143–1153 [View Article][PubMed]
    [Google Scholar]
  16. Hull R. A., Hull S. I. ( 1997). Nutritional requirements for growth of uropathogenic Escherichia coli in human urine. Infect Immun 65:1960–1961[PubMed]
    [Google Scholar]
  17. Hung C. S., Dodson K. W., Hultgren S. J. ( 2009). A murine model of urinary tract infection. Nat Protoc 4:1230–1243 [View Article][PubMed]
    [Google Scholar]
  18. Justice S. S., Hung C., Theriot J. A., Fletcher D. A., Anderson G. G., Footer M. J., Hultgren S. J. ( 2004). Differentiation and developmental pathways of uropathogenic Escherichia coli in urinary tract pathogenesis. Proc Natl Acad Sci U S A 101:1333–1338 [View Article][PubMed]
    [Google Scholar]
  19. Kao J. S., Stucker D. M., Warren J. W., Mobley H. L. ( 1997). Pathogenicity island sequences of pyelonephritogenic Escherichia coli CFT073 are associated with virulent uropathogenic strains. Infect Immun 65:2812–2820[PubMed]
    [Google Scholar]
  20. Kulesus R. R., Diaz-Perez K., Slechta E. S., Eto D. S., Mulvey M. A. ( 2008). Impact of the RNA chaperone Hfq on the fitness and virulence potential of uropathogenic Escherichia coli . Infect Immun 76:3019–3026 [View Article][PubMed]
    [Google Scholar]
  21. Kunin C. M., Hua T. H., Krishnan C., Van Arsdale White L., Hacker J. ( 1993). Isolation of a nicotinamide-requiring clone of Escherichia coli O18:K1:H7 from women with acute cystitis: resemblance to strains found in neonatal meningitis. Clin Infect Dis 16:412–416 [View Article][PubMed]
    [Google Scholar]
  22. Lan R., Alles M. C., Donohoe K., Martinez M. B., Reeves P. R. ( 2004). Molecular evolutionary relationships of enteroinvasive Escherichia coli and Shigella spp. Infect Immun 72:5080–5088 [View Article][PubMed]
    [Google Scholar]
  23. Lane M. C., Alteri C. J., Smith S. N., Mobley H. L. ( 2007). Expression of flagella is coincident with uropathogenic Escherichia coli ascension to the upper urinary tract. Proc Natl Acad Sci U S A 104:16669–16674 [View Article][PubMed]
    [Google Scholar]
  24. Mantis N. J., Sansonetti P. J. ( 1996). The nadB gene of Salmonella typhimurium complements the nicotinic acid auxotrophy of Shigella flexneri . Mol Gen Genet 252:626–629 [View Article][PubMed]
    [Google Scholar]
  25. Miller J. H. ( 1992). A short course in bacterial genetics: a laboratory manual and handbook for Escherichia coli and related bacteria Plainview, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  26. Mulvey M. A., Schilling J. D., Hultgren S. J. ( 2001). Establishment of a persistent Escherichia coli reservoir during the acute phase of a bladder infection. Infect Immun 69:4572–4579 [View Article][PubMed]
    [Google Scholar]
  27. Nimmich W., Zingler G. ( 1984). Biochemical characteristics, phage patterns, and O1 factor analysis of Escherichia coli O1:K1:H7:F11 and O1:K1:H-:F9 strains isolated from patients with urinary tract infections. Med Microbiol Immunol (Berl) 173:75–85 [View Article][PubMed]
    [Google Scholar]
  28. Ochman H., Davalos L. M. ( 2006). The nature and dynamics of bacterial genomes. Science 311:1730–1733 [View Article][PubMed]
    [Google Scholar]
  29. Osterman A. ( 2002). Escherichia coli and Salmonella: cellular and molecular biology Begley T. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  30. Pattery T., Hernalsteens J. P., De Greve H. ( 1999). Identification and molecular characterization of a novel Salmonella enteritidis pathogenicity islet encoding an ABC transporter. Mol Microbiol 33:791–805 [View Article][PubMed]
    [Google Scholar]
  31. Prunier A. L., Schuch R., Fernández R. E., Maurelli A. T. ( 2007a). Genetic structure of the nadA and nadB antivirulence loci in Shigella spp. J Bacteriol 189:6482–6486 [View Article][PubMed]
    [Google Scholar]
  32. Prunier A. L., Schuch R., Fernández R. E., Mumy K. L., Kohler H., McCormick B. A., Maurelli A. T. ( 2007b). nadA and nadB of Shigella flexneri 5a are antivirulence loci responsible for the synthesis of quinolinate, a small molecule inhibitor of Shigella pathogenicity. Microbiology 153:2363–2372 [View Article][PubMed]
    [Google Scholar]
  33. Purich D. L., Allison R. D. ( 2002). The enzyme reference: a comprehensive guidebook to enzyme nomenclature, reactions, and methods San Diego, CA: Academic Press;
    [Google Scholar]
  34. Reed J. L., Vo T. D., Schilling C. H., Palsson B. O. ( 2003). An expanded genome-scale model of Escherichia coli K-12 (iJR904 GSM/GPR). Genome Biol 4:R54 [View Article][PubMed]
    [Google Scholar]
  35. Rosen D. A., Hung C. S., Kline K. A., Hultgren S. J. ( 2008). Streptozocin-induced diabetic mouse model of urinary tract infection. Infect Immun 76:4290–4298 [View Article][PubMed]
    [Google Scholar]
  36. Russo T. A., Jodush S. T., Brown J. J., Johnson J. R. ( 1996). Identification of two previously unrecognized genes (guaA and argC) important for uropathogenesis. Mol Microbiol 22:217–229 [CrossRef]
    [Google Scholar]
  37. Simon R., Priefer U., Pühler A. ( 1983). A broad host range mobillization system for in vivo genetic engineering: transposon mutagenesis in gram negative bacteria. Nature Biotechnology 1:784–791 [CrossRef]
    [Google Scholar]
  38. Stokes J. L., Bayne H. G. ( 1958). Growth-factor-dependent strains of Salmonellae . J Bacteriol 76:417–421[PubMed]
    [Google Scholar]
  39. Tedeschi G., Ronchi S., Simonic T., Treu C., Mattevi A., Negri A. ( 2001). Probing the active site of l-aspartate oxidase by site-directed mutagenesis: role of basic residues in fumarate reduction. Biochemistry 40:4738–4744 [View Article][PubMed]
    [Google Scholar]
  40. Welch R. A., Burland V., Plunkett G. III, Redford P., Roesch P., Rasko D., Buckles E. L., Liou S. R., Boutin A. & other authors ( 2002). Extensive mosaic structure revealed by the complete genome sequence of uropathogenic Escherichia coli . Proc Natl Acad Sci U S A 99:17020–17024 [View Article][PubMed]
    [Google Scholar]
  41. Wiles T. J., Bower J. M., Redd M. J., Mulvey M. A. ( 2009). Use of zebrafish to probe the divergent virulence potentials and toxin requirements of extraintestinal pathogenic Escherichia coli . PLoS Pathog 5:e1000697 [View Article][PubMed]
    [Google Scholar]
  42. Woodcock D. M., Crowther P. J., Doherty J., Jefferson S., DeCruz E., Noyer-Weidner M., Smith S. S., Michael M. Z., Graham M. W. ( 1989). Quantitative evaluation of Escherichia coli host strains for tolerance to cytosine methylation in plasmid and phage recombinants. Nucleic Acids Res 17:3469–3478 [CrossRef]
    [Google Scholar]
  43. You K. S., Oppenheimer N. J. ( 1985). Stereospecificity for nicotinamide nucleotides in enzymatic and chemical hydride transfer reactions. CRC Crit Rev Biochem 17:313–451 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.052043-0
Loading
/content/journal/micro/10.1099/mic.0.052043-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error