1887

Abstract

Mycoparasitic species are applied as biocontrol agents in agriculture to guard plants against fungal diseases. During mycoparasitism, directly interacts with phytopathogenic fungi, preceded by a specific recognition of the host and resulting in its disarming and killing. In various fungal pathogens, including mycoparasites, signalling via heterotrimeric G proteins plays a major role in regulating pathogenicity-related functions. However, the corresponding receptors involved in the recognition of host-derived signals are largely unknown. Functional characterization of Gpr1 revealed a prominent role of this seven-transmembrane protein of the cAMP-receptor-like family of fungal G-protein-coupled receptors in the antagonistic interaction with the host fungus and governing of mycoparasitism-related processes. Silencing of led to an avirulent phenotype accompanied by an inability to attach to host hyphae. Furthermore, silenced transformants were unable to respond to the presence of living host fungi with the expression of chitinase- and protease-encoding genes. Addition of exogenous cAMP was able to restore host attachment in -silenced transformants but could not restore mycoparasitic overgrowth. A search for downstream targets of the signalling pathway(s) involving Gpr1 resulted in the isolation of genes encoding e.g. a member of the cyclin-like superfamily and a small secreted cysteine-rich protein. Although silencing of caused defects similar to those of mutants lacking the Tga3 Gα protein, no direct interaction between Gpr1 and Tga3 was observed in a split-ubiquitin two-hybrid assay.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.052035-0
2012-01-01
2019-12-13
Loading full text...

Full text loading...

/deliver/fulltext/micro/158/1/107.html?itemId=/content/journal/micro/10.1099/mic.0.052035-0&mimeType=html&fmt=ahah

References

  1. Baker K. F.. ( 1987;). Evolving concepts of biological control of plant pathogens. . Annu Rev Phytopathol 25:, 67–85. [CrossRef]
    [Google Scholar]
  2. Baldwin J. M.. ( 1993;). The probable arrangement of the helices in G protein-coupled receptors. . EMBO J 12:, 1693–1703.[PubMed]
    [Google Scholar]
  3. Blumer K. J., Reneke J. E., Thorner J.. ( 1988;). The STE2 gene product is the ligand-binding component of the alpha-factor receptor of Saccharomyces cerevisiae. . J Biol Chem 263:, 10836–10842.[PubMed]
    [Google Scholar]
  4. Brunner K., Peterbauer C. K., Mach R. L., Lorito M., Zeilinger S., Kubicek C. P.. ( 2003;). The Nag1 N-acetylglucosaminidase of Trichoderma atroviride is essential for chitinase induction by chitin and of major relevance to biocontrol. . Curr Genet 43:, 289–295. [CrossRef][PubMed]
    [Google Scholar]
  5. Brunner K., Omann M., Pucher M. E., Delic M., Lehner S. M., Domnanich P., Kratochwill K., Druzhinina I., Denk D., Zeilinger S.. ( 2008;). Trichoderma G protein-coupled receptors: functional characterisation of a cAMP receptor-like protein from Trichoderma atroviride. . Curr Genet 54:, 283–299. [CrossRef][PubMed]
    [Google Scholar]
  6. Brzostowski J. A., Kimmel A. R.. ( 2001;). Signaling at zero G: G-protein-independent functions for 7-TM receptors. . Trends Biochem Sci 26:, 291–297. [CrossRef][PubMed]
    [Google Scholar]
  7. Chang Y. C., Miller G. F., Kwon-Chung K. J.. ( 2003;). Importance of a developmentally regulated pheromone receptor of Cryptococcus neoformans for virulence. . Infect Immun 71:, 4953–4960. [CrossRef][PubMed]
    [Google Scholar]
  8. Chet I., Benhamou N., Haran S.. ( 1998;). Mycoparasitism and lytic enzymes. . In Trichoderma and Gliocladium, vol. 2, pp. 153–171. Edited by Harman G. E., Kubicek C. P... London:: Taylor & Francis;.
    [Google Scholar]
  9. Claydon N., Allan M., Hanson J. R., Avent A. G.. ( 1987;). Antifungal alkyl pyrones of Trichoderma harzianum. . Trans Br Mycol Soc 88:, 503–513. [CrossRef]
    [Google Scholar]
  10. DeZwaan T. M., Carroll A. M., Valent B., Sweigard J. A.. ( 1999;). Magnaporthe grisea pth11p is a novel plasma membrane protein that mediates appressorium differentiation in response to inductive substrate cues. . Plant Cell 11:, 2013–2030. [CrossRef][PubMed]
    [Google Scholar]
  11. Dohlman H. G., Thorner J., Caron M. G., Lefkowitz R. J.. ( 1991;). Model systems for the study of seven-transmembrane-segment receptors. . Annu Rev Biochem 60:, 653–688. [CrossRef][PubMed]
    [Google Scholar]
  12. Elad Y., Chet I., Boyle P., Henis Y.. ( 1983;). Parasitism by Trichoderma spp. on Rhizoctonia solani and Sclerotium rolfsii – scanning electron microscopy and fluorescence microscopy. . Phytopathology 73:, 85–88. [CrossRef]
    [Google Scholar]
  13. Gehrke A., Heinekamp T., Jacobsen I. D., Brakhage A. A.. ( 2010;). Heptahelical receptors GprC and GprD of Aspergillus fumigatus are essential regulators of colony growth, hyphal morphogenesis, and virulence. . Appl Environ Microbiol 76:, 3989–3998. [CrossRef][PubMed]
    [Google Scholar]
  14. Geremia R. A., Goldman G. H., Jacobs D., Ardrtes W., Vila S. B., Van Montagu M., Herrera-Estrella A.. ( 1993;). Molecular characterization of the proteinase-encoding gene, prb1, related to mycoparasitism by Trichoderma harzianum. . Mol Microbiol 8:, 603–613. [CrossRef][PubMed]
    [Google Scholar]
  15. Gutkind J. S.. ( 1998;). Cell growth control by G protein-coupled receptors: from signal transduction to signal integration. . Oncogene 17:, 1331–1342. [CrossRef][PubMed]
    [Google Scholar]
  16. Hagen D. C., McCaffrey G., Sprague G. F. Jr. ( 1986;). Evidence the yeast STE3 gene encodes a receptor for the peptide pheromone a factor: gene sequence and implications for the structure of the presumed receptor. . Proc Natl Acad Sci U S A 83:, 1418–1422. [CrossRef][PubMed]
    [Google Scholar]
  17. Harman G. E., Howell C. R., Viterbo A., Chet I., Lorito M.. ( 2004;). Trichoderma species – opportunistic, avirulent plant symbionts. . Nat Rev Microbiol 2:, 43–56. [CrossRef][PubMed]
    [Google Scholar]
  18. Hickey P. C., Swift S. R., Roca M. G., Read N. D.. ( 2005;). Live-cell imaging of filamentous fungi using vital fluorescent dyes and confocal microscopy. . In Methods in Microbiology, Microbial Imaging, vol. 35, pp. 63–87. Edited by Savidge T., Pothoulakis C... London:: Elsevier;.
    [Google Scholar]
  19. Hjeljord L., Tronsmo A.. ( 1998;). Trichoderma and Gliocladium in biological control: an overview. . In Trichoderma and Gliocladium, vol. 2, pp. 131–152. Edited by Harman G. E., Kubicek C. P... London, UK:: Taylor & Francis;.
    [Google Scholar]
  20. Hsueh Y. P., Xue C., Heitman J.. ( 2009;). A constitutively active GPCR governs morphogenic transitions in Cryptococcus neoformans. . EMBO J 28:, 1220–1233. [CrossRef][PubMed]
    [Google Scholar]
  21. Inbar J., Chet I.. ( 1994;). A newly isolated lectin from the plant pathogenic fungus Sclerotium rolfsii: purification, characterization and role in mycoparasitism. . Microbiology 140:, 651–657. [CrossRef][PubMed]
    [Google Scholar]
  22. Kim H., Borkovich K. A.. ( 2004;). A pheromone receptor gene, pre-1, is essential for mating type-specific directional growth and fusion of trichogynes and female fertility in Neurospora crassa. . Mol Microbiol 52:, 1781–1798. [CrossRef][PubMed]
    [Google Scholar]
  23. Konopka J. B., Margarit S. M., Dube P.. ( 1996;). Mutation of Pro-258 in transmembrane domain 6 constitutively activates the G protein-coupled alpha-factor receptor. . Proc Natl Acad Sci U S A 93:, 6764–6769. [CrossRef][PubMed]
    [Google Scholar]
  24. Krogh A., Larsson B., von Heijne G., Sonnhammer E. L.. ( 2001;). Predicting transmembrane protein topology with a hidden Markov model: application to complete genomes. . J Mol Biol 305:, 567–580. [CrossRef][PubMed]
    [Google Scholar]
  25. Krystofova S., Borkovich K. A.. ( 2006;). The predicted G-protein-coupled receptor GPR-1 is required for female sexual development in the multicellular fungus Neurospora crassa. . Eukaryot Cell 5:, 1503–1516. [CrossRef][PubMed]
    [Google Scholar]
  26. Kubicek C. P., Mach R. L., Peterbauer C. K., Lorito M.. ( 2001;). Trichoderma: from genes to biocontrol. . J Plant Pathol 83:, 11–23.
    [Google Scholar]
  27. Kubicek C. P., Herrera-Estrella A., Seidl-Seiboth V., Martinez D. A., Druzhinina I. S., Thon M., Zeilinger S., Casas-Flores S., Horwitz B. A.. & other authors ( 2011;). Comparative genome sequence analysis underscores mycoparasitism as the ancestral life style of Trichoderma. . Genome Biol 12:, R40. [CrossRef][PubMed]
    [Google Scholar]
  28. Kullnig C., Mach R. L., Lorito M., Kubicek C. P.. ( 2000;). Enzyme diffusion from Trichoderma atroviride ( = T. harzianum P1) to Rhizoctonia solani is a prerequisite for triggering of Trichoderma ech42 gene expression before mycoparasitic contact. . Appl Environ Microbiol 66:, 2232–2234. [CrossRef][PubMed]
    [Google Scholar]
  29. Lafon A., Han K. H., Seo J. A., Yu J. H., d’Enfert C.. ( 2006;). G-protein and cAMP-mediated signaling in aspergilli: a genomic perspective. . Fungal Genet Biol 43:, 490–502. [CrossRef][PubMed]
    [Google Scholar]
  30. Lander E. S., Linton L. M., Birren B., Nusbaum C., Zody M. C., Baldwin J., Devon K., Dewar K., Doyle M.. & other authors ( 2001;). Initial sequencing and analysis of the human genome. . Nature 409:, 860–921. [CrossRef][PubMed]
    [Google Scholar]
  31. Lee M., O’Regan S., Moreau J. L., Johnson A. L., Johnston L. H., Goding C. R.. ( 2000;). Regulation of the Pcl7-Pho85 cyclin-cdk complex by Pho81. . Mol Microbiol 38:, 411–422. [CrossRef][PubMed]
    [Google Scholar]
  32. Li L., Wright S. J., Krystofova S., Park G., Borkovich K. A.. ( 2007;). Heterotrimeric G protein signaling in filamentous fungi. . Annu Rev Microbiol 61:, 423–452. [CrossRef][PubMed]
    [Google Scholar]
  33. Lorito M., Woo S. L., D'Ambrosio M., Harman G. E., Hayes C. K., Kubicek C. P., Scala F.. ( 1996;). Synergistic action between cell wall degrading enzymes and membrane affecting compounds. . Mol Plant Microbe Interact 9:, 206–213. [CrossRef]
    [Google Scholar]
  34. Lu Z., Tombolini R., Woo S., Zeilinger S., Lorito M., Jansson J. K.. ( 2004;). In vivo study of Trichoderma–pathogen–plant interactions, using constitutive and inducible green fluorescent protein reporter systems. . Appl Environ Microbiol 70:, 3073–3081. [CrossRef][PubMed]
    [Google Scholar]
  35. Mukherjee P. K., Latha J., Hadar R., Horwitz B. A.. ( 2004;). Role of two G-protein alpha subunits, TgaA and TgaB, in the antagonism of plant pathogens by Trichoderma virens. . Appl Environ Microbiol 70:, 542–549. [CrossRef][PubMed]
    [Google Scholar]
  36. Mukherjee M., Mukherjee P. K., Kale S. P.. ( 2007;). cAMP signalling is involved in growth, germination, mycoparasitism and secondary metabolism in Trichoderma virens. . Microbiology 153:, 1734–1742. [CrossRef][PubMed]
    [Google Scholar]
  37. Neer E. J.. ( 1995;). Heterotrimeric G proteins: organizers of transmembrane signals. . Cell 80:, 249–257. [CrossRef][PubMed]
    [Google Scholar]
  38. Omero C., Inbar J., Rocha-Ramirez V., Herrera-Estrella A., Chet I., Horwitz B. A.. ( 1999;). G protein activators and cAMP promote mycoparasitic behaviour in Trichoderma harzianum. . Mycol Res 103:, 1637–1642. [CrossRef]
    [Google Scholar]
  39. Pérez-Martín J., Castillo-Lluva S.. ( 2008;). Connections between polar growth and cell cycle arrest during the induction of the virulence program in the phytopathogenic fungus Ustilago maydis. . Plant Signal Behav 3:, 480–481. [CrossRef][PubMed]
    [Google Scholar]
  40. Peterbauer C. K., Lorito M., Hayes C. K., Harman G. E., Kubicek C. P.. ( 1996;). Molecular cloning and expression of the nag1 gene (N-acetyl-β-d-glucosaminidase-encoding gene) from Trichoderma harzianum P1. . Curr Genet 30:, 325–331. [CrossRef][PubMed]
    [Google Scholar]
  41. Pfaffl M. W.. ( 2001;). A new mathematical model for relative quantification in real-time RT-PCR. . Nucleic Acids Res 29:, e45. [CrossRef][PubMed]
    [Google Scholar]
  42. Reithner B., Brunner K., Schuhmacher R., Peissl I., Seidl V., Krska R., Zeilinger S.. ( 2005;). The G protein alpha subunit Tga1 of Trichoderma atroviride is involved in chitinase formation and differential production of antifungal metabolites. . Fungal Genet Biol 42:, 749–760. [CrossRef][PubMed]
    [Google Scholar]
  43. Rocha-Ramirez V., Omero C., Chet I., Horwitz B. A., Herrera-Estrella A.. ( 2002;). Trichoderma atroviride G-protein α-subunit gene tga1 is involved in mycoparasitic coiling and conidiation. . Eukaryot Cell 1:, 594–605. [CrossRef][PubMed]
    [Google Scholar]
  44. Sambrook J., Fritsch E. F., Maniatis T.. ( 1989;). Molecular Cloning: a Laboratory Manual. Cold Spring Harbor, NY:: Cold Spring Harbor Laboratory;.
    [Google Scholar]
  45. Stagljar I., Korostensky C., Johnsson N., te Heesen S.. ( 1998;). A genetic system based on split-ubiquitin for the analysis of interactions between membrane proteins in vivo. . Proc Natl Acad Sci U S A 95:, 5187–5192. [CrossRef][PubMed]
    [Google Scholar]
  46. Tanaka K., Davey J., Imai Y., Yamamoto M.. ( 1993;). Schizosaccharomyces pombe map3+ encodes the putative M-factor receptor. . Mol Cell Biol 13:, 80–88.[PubMed]
    [Google Scholar]
  47. Tichopad A., Dilger M., Schwarz G., Pfaffl M. W.. ( 2003;). Standardized determination of real-time PCR efficiency from a single reaction set-up. . Nucleic Acids Res 31:, e122. [CrossRef][PubMed]
    [Google Scholar]
  48. Vandesompele J., De Preter K., Pattyn F., Poppe B., Van Roy N., De Paepe A., Speleman F.. ( 2002;). Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. . Genome Biol 3:, RESEARCH003434.1–RESEARCH0034.11. [CrossRef][PubMed]
    [Google Scholar]
  49. Wang Y., Li A., Wang X., Zhang X., Zhao W., Dou D., Zheng X., Wang Y.. ( 2010;). GPR11, a putative seven-transmembrane G protein-coupled receptor, controls zoospore development and virulence of Phytophthora sojae. . Eukaryot Cell 9:, 242–250. [CrossRef][PubMed]
    [Google Scholar]
  50. Xue C., Bahn Y. S., Cox G. M., Heitman J.. ( 2006;). G protein-coupled receptor Gpr4 senses amino acids and activates the cAMP-PKA pathway in Cryptococcus neoformans. . Mol Biol Cell 17:, 667–679. [CrossRef][PubMed]
    [Google Scholar]
  51. Zeilinger S., Galhaup C., Payer K., Woo S. L., Mach R. L., Fekete C., Lorito M., Kubicek C. P.. ( 1999;). Chitinase gene expression during mycoparasitic interaction of Trichoderma harzianum with its host. . Fungal Genet Biol 26:, 131–140. [CrossRef][PubMed]
    [Google Scholar]
  52. Zeilinger S., Reithner B., Scala V., Peissl I., Lorito M., Mach R. L.. ( 2005;). Signal transduction by Tga3, a novel G protein alpha subunit of Trichoderma atroviride. . Appl Environ Microbiol 71:, 1591–1597. [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.052035-0
Loading
/content/journal/micro/10.1099/mic.0.052035-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error