Genetic markers for lineages linked to hypervirulence Free

Abstract

Rapid identification of hypervirulent strains is essential for preventing their spread. Recent completion of several full-length genomes provided an excellent opportunity to identify potentially unique genes that characterize hypervirulent strains. Based on sequence comparisons between strains we describe two gene insertions into the genome of hypervirulent PCR ribotypes 078 and 027. Analysis of these regions, of 1.7 and 4.2 kb, respectively, revealed that they contain several interesting ORFs. The 078 region is inserted intergenically and introduces an enzyme that is involved in the biosynthesis of several antibiotics. The 027 insert disrupts the thymidylate synthetase () gene and replaces it with an equivalent, catalytically more efficient, gene. Both gene insertions were used to develop ribotype-specific PCRs, which were validated by screening a large strain collection consisting of 68 different PCR ribotypes supplemented with diverse 078 and 027 strains derived from different geographical locations and individual outbreaks. The genetic markers were stably present in the hypervirulent PCR ribotypes 078 and 027, but were also found in several other PCR ribotypes. Comparative analysis of amplified fragment length polymorphisms, PCR ribotype banding patterns and toxin profiles showed that all PCR ribotypes sharing the same insert from phylogenetically coherent clusters. The identified loci are unique to these clusters, to which the hypervirulent ribotypes 078 and 027 belong. This provides valuable information on strains belonging to two distinct lineages within that are highly related to hypervirulent strains.

Funding
This study was supported by the:
  • Netherlands Organization for Scientific Research
  • NWO (Award 50-50800-98-079)
  • HYPERDIFF-The Physiological Basis of Hypervirulence in Clostridium difficile: a Prerequisite for Effective Infection Control (Award Health-F3-2008-223585)
Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.051953-0
2011-11-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/micro/157/11/3113.html?itemId=/content/journal/micro/10.1099/mic.0.051953-0&mimeType=html&fmt=ahah

References

  1. Akerlund T., Persson I., Unemo M., Norén T., Svenungsson B., Wullt M., Burman L. G. ( 2008). Increased sporulation rate of epidemic Clostridium difficile type 027/NAP1. J Clin Microbiol 46:1530–1533 [View Article][PubMed]
    [Google Scholar]
  2. Alonso R., Muñoz C., Gros S., García de Viedma D., Peláez T., Bouza E. ( 1999). Rapid detection of toxigenic Clostridium difficile from stool samples by a nested PCR of toxin B gene. J Hosp Infect 41:145–149 [View Article][PubMed]
    [Google Scholar]
  3. Avbersek J., Janezic S., Pate M., Rupnik M., Zidaric V., Logar K., Vengust M., Zemljic M., Pirs T., Ocepek M. ( 2009). Diversity of Clostridium difficile in pigs and other animals in Slovenia. Anaerobe 15:252–255 [View Article][PubMed]
    [Google Scholar]
  4. Bakker D., Corver J., Harmanus C., Goorhuis A., Keessen E. C., Fawley W. N., Wilcox M. H., Kuijper E. J. ( 2010). Relatedness of human and animal Clostridium difficile PCR ribotype 078 isolates determined on the basis of multilocus variable-number tandem-repeat analysis and tetracycline resistance. J Clin Microbiol 48:3744–3749 [View Article][PubMed]
    [Google Scholar]
  5. Bauer M. P., Notermans D. W., van Benthem B. H., Brazier J. S., Wilcox M. H., Rupnik M., Monnet D. L., van Dissel J. T., Kuijper E. J. ECDIS Study Group ( 2011). Clostridium difficile infection in Europe: a hospital-based survey. Lancet 377:63–73 [View Article][PubMed]
    [Google Scholar]
  6. Bidet P., Barbut F., Lalande V., Burghoffer B., Petit J. C. ( 1999). Development of a new PCR-ribotyping method for Clostridium difficile based on ribosomal RNA gene sequencing. FEMS Microbiol Lett 175:261–266 [View Article][PubMed]
    [Google Scholar]
  7. Brazier J. S. ( 2001). Typing of Clostridium difficile. Clin Microbiol Infect 7:428–431 [View Article][PubMed]
    [Google Scholar]
  8. Chaudhuri R. R., Loman N. J., Snyder L. A., Bailey C. M., Stekel D. J., Pallen M. J. ( 2008). xBASE2: a comprehensive resource for comparative bacterial genomics. Nucleic Acids Res 36:Database issueD543–D546 [View Article][PubMed]
    [Google Scholar]
  9. Dingle K. E., Griffiths D., Didelot X., Evans J., Vaughan A., Kachrimanidou M., Stoesser N., Jolley K. A., Golubchik T. et al. & other authors ( 2011). Clinical Clostridium difficile: clonality and pathogenicity locus diversity. PLoS ONE 6:e19993 [View Article][PubMed]
    [Google Scholar]
  10. Escartin F., Skouloubris S., Liebl U., Myllykallio H. ( 2008). Flavin-dependent thymidylate synthase X limits chromosomal DNA replication. Proc Natl Acad Sci U S A 105:9948–9952 [View Article][PubMed]
    [Google Scholar]
  11. Esra Önen F., Boum Y., Jacquement C., Spanedda M. V., Jaber N., Scherman D., Myllykallio H., Herscovici J. ( 2008). Design, synthesis and evaluation of potent thymidylate synthase X inhibitors. Bioorg Med Chem Lett 18:3628–3631 [View Article][PubMed]
    [Google Scholar]
  12. Goorhuis A., Bakker D., Corver J., Debast S. B., Harmanus C., Notermans D. W., Bergwerff A. A., Dekker F. W., Kuijper E. J. ( 2008). Emergence of Clostridium difficile infection due to a new hypervirulent strain, polymerase chain reaction ribotype 078. Clin Infect Dis 47:1162–1170 [View Article][PubMed]
    [Google Scholar]
  13. Griffiths D., Fawley W., Kachrimanidou M., Bowden R., Crook D. W., Fung R., Golubchik T., Harding R. M., Jeffery K. J. et al. & other authors ( 2010). Multilocus sequence typing of Clostridium difficile. J Clin Microbiol 48:770–778 [View Article][PubMed]
    [Google Scholar]
  14. He M., Sebaihia M., Lawley T. D., Stabler R. A., Dawson L. F., Martin M. J., Holt K. E., Seth-Smith H. M., Quail M. A. et al. & other authors ( 2010). Evolutionary dynamics of Clostridium difficile over short and long time scales. Proc Natl Acad Sci U S A 107:7527–7532 [View Article][PubMed]
    [Google Scholar]
  15. Indra A., Blaschitz M., Kernbichler S., Reischl U., Wewalka G., Allerberger F. ( 2010). Mechanisms behind variation in the Clostridium difficile 16S–23S rRNA intergenic spacer region. J Med Microbiol 59:1317–1323 [View Article][PubMed]
    [Google Scholar]
  16. Janezic S., Strumbelj I., Rupnik M. ( 2011). Use of modified PCR ribotyping for direct detection of Clostridium difficile ribotypes in stool samples. J Clin Microbiol 49:3024–3025 [View Article][PubMed]
    [Google Scholar]
  17. Janvilisri T., Scaria J., Thompson A. D., Nicholson A., Limbago B. M., Arroyo L. G., Songer J. G., Gröhn Y. T., Chang Y. F. ( 2009). Microarray identification of Clostridium difficile core components and divergent regions associated with host origin. J Bacteriol 191:3881–3891 [View Article][PubMed]
    [Google Scholar]
  18. Kallen A. J., Thompson A., Ristaino P., Chapman L., Nicholson A., Sim B. T., Lessa F., Sharapov U., Fadden E. et al. & other authors ( 2009). Complete restriction of fluoroquinolone use to control an outbreak of Clostridium difficile infection at a community hospital. Infect Control Hosp Epidemiol 30:264–272 [View Article][PubMed]
    [Google Scholar]
  19. Kato H., Kato N., Katow S., Maegawa T., Nakamura S., Lyerly D. M. ( 1999). Deletions in the repeating sequences of the toxin A gene of toxin A-negative, toxin B-positive Clostridium difficile strains. FEMS Microbiol Lett 175:197–203 [View Article][PubMed]
    [Google Scholar]
  20. Keel K., Brazier J. S., Post K. W., Weese S., Songer J. G. ( 2007). Prevalence of PCR ribotypes among Clostridium difficile isolates from pigs, calves, and other species. J Clin Microbiol 45:1963–1964 [View Article][PubMed]
    [Google Scholar]
  21. Kelly C. P., Pothoulakis C., LaMont J. T. ( 1994). Clostridium difficile colitis. N Engl J Med 330:257–262 [View Article][PubMed]
    [Google Scholar]
  22. Killgore G., Thompson A., Johnson S., Brazier J., Kuijper E., Pepin J., Frost E. H., Savelkoul P., Nicholson B. et al. & other authors ( 2008). Comparison of seven techniques for typing international epidemic strains of Clostridium difficile: restriction endonuclease analysis, pulsed-field gel electrophoresis, PCR-ribotyping, multilocus sequence typing, multilocus variable-number tandem-repeat analysis, amplified fragment length polymorphism, and surface layer protein A gene sequence typing. J Clin Microbiol 46:431–437 [View Article][PubMed]
    [Google Scholar]
  23. Koehn E. M., Kohen A. ( 2010). Flavin-dependent thymidylate synthase: a novel pathway towards thymine. Arch Biochem Biophys 493:96–102 [View Article][PubMed]
    [Google Scholar]
  24. Koehn E. M., Fleischmann T., Conrad J. A., Palfey B. A., Lesley S. A., Mathews I. I., Kohen A. ( 2009). An unusual mechanism of thymidylate biosynthesis in organisms containing the thyX gene. Nature 458:919–923 [View Article][PubMed]
    [Google Scholar]
  25. Lyras D., O’Connor J. R., Howarth P. M., Sambol S. P., Carter G. P., Phumoonna T., Poon R., Adams V., Vedantam G. et al. & other authors ( 2009). Toxin B is essential for virulence of Clostridium difficile. Nature 458:1176–1179 [View Article][PubMed]
    [Google Scholar]
  26. Marsden G. L., Davis I. J., Wright V. J., Sebaihia M., Kuijper E. J., Minton N. P. ( 2010). Array comparative hybridisation reveals a high degree of similarity between UK and European clinical isolates of hypervirulent Clostridium difficile. BMC Genomics 11:389 [View Article][PubMed]
    [Google Scholar]
  27. McDonald L. C., Killgore G. E., Thompson A., Owens R. C. Jr, Kazakova S. V., Sambol S. P., Johnson S., Gerding D. N. ( 2005). An epidemic, toxin gene-variant strain of Clostridium difficile. N Engl J Med 353:2433–2441 [View Article][PubMed]
    [Google Scholar]
  28. Merrigan M., Venugopal A., Mallozzi M., Roxas B., Viswanathan V. K., Johnson S., Gerding D. N., Vedantam G. ( 2010). Human hypervirulent Clostridium difficile strains exhibit increased sporulation as well as robust toxin production. J Bacteriol 192:4904–4911 [View Article][PubMed]
    [Google Scholar]
  29. Pépin J., Valiquette L., Alary M. E., Villemure P., Pelletier A., Forget K., Pépin K., Chouinard D. ( 2004). Clostridium difficile-associated diarrhea in a region of Quebec from 1991 to 2003: a changing pattern of disease severity. CMAJ 171:466–472 [View Article][PubMed]
    [Google Scholar]
  30. Pépin J., Valiquette L., Cossette B. ( 2005). Mortality attributable to nosocomial Clostridium difficile-associated disease during an epidemic caused by a hypervirulent strain in Quebec. CMAJ 173:1037–1042 [View Article][PubMed]
    [Google Scholar]
  31. Pirs T., Ocepek M., Rupnik M. ( 2008). Isolation of Clostridium difficile from food animals in Slovenia. J Med Microbiol 57:790–792 [View Article][PubMed]
    [Google Scholar]
  32. Pituch H., Brazier J. S., Obuch-Woszczatynski P., Wultanska D., Meisel-Mikolajczyk F., Luczak M. ( 2006). Prevalence and association of PCR ribotypes of Clostridium difficile isolated from symptomatic patients from Warsaw with macrolide-lincosamide-streptogramin B (MLSB) type resistance. J Med Microbiol 55:207–213 [View Article][PubMed]
    [Google Scholar]
  33. Rupnik M., Brazier J. S., Duerden B. I., Grabnar M., Stubbs S. L. ( 2001). Comparison of toxinotyping and PCR ribotyping of Clostridium difficile strains and description of novel toxinotypes. Microbiology 147:439–447[PubMed]
    [Google Scholar]
  34. Rupnik M., Wilcox M. H., Gerding D. N. ( 2009). Clostridium difficile infection: new developments in epidemiology and pathogenesis. Nat Rev Microbiol 7:526–536 [View Article][PubMed]
    [Google Scholar]
  35. Schwan C., Stecher B., Tzivelekidis T., van Ham M., Rohde M., Hardt W. D., Wehland J., Aktories K. ( 2009). Clostridium difficile toxin CDT induces formation of microtubule-based protrusions and increases adherence of bacteria. PLoS Pathog 5:e1000626 [View Article][PubMed]
    [Google Scholar]
  36. Sciara G., Kendrew S. G., Miele A. E., Marsh N. G., Federici L., Malatesta F., Schimperna G., Savino C., Vallone B. ( 2003). The structure of ActVA-Orf6, a novel type of monooxygenase involved in actinorhodin biosynthesis. EMBO J 22:205–215 [View Article][PubMed]
    [Google Scholar]
  37. Sebaihia M., Wren B. W., Mullany P., Fairweather N. F., Minton N., Stabler R., Thomson N. R., Roberts A. P., Cerdeño-Tárraga A. M. et al. & other authors ( 2006). The multidrug-resistant human pathogen Clostridium difficile has a highly mobile, mosaic genome. Nat Genet 38:779–786 [View Article][PubMed]
    [Google Scholar]
  38. Söding J. ( 2005). Protein homology detection by HMM–HMM comparison. Bioinformatics 21:951–960 [View Article][PubMed]
    [Google Scholar]
  39. Spigaglia P., Mastrantonio P. ( 2002). Molecular analysis of the pathogenicity locus and polymorphism in the putative negative regulator of toxin production (TcdC) among Clostridium difficile clinical isolates. J Clin Microbiol 40:3470–3475 [View Article][PubMed]
    [Google Scholar]
  40. Stabler R. A., Gerding D. N., Songer J. G., Drudy D., Brazier J. S., Trinh H. T., Witney A. A., Hinds J., Wren B. W. ( 2006). Comparative phylogenomics of Clostridium difficile reveals clade specificity and microevolution of hypervirulent strains. J Bacteriol 188:7297–7305 [View Article][PubMed]
    [Google Scholar]
  41. Stabler R. A., He M., Dawson L., Martin M., Valiente E., Corton C., Lawley T. D., Sebaihia M., Quail M. A. et al. & other authors ( 2009). Comparative genome and phenotypic analysis of Clostridium difficile 027 strains provides insight into the evolution of a hypervirulent bacterium. Genome Biol 10:R102 [View Article][PubMed]
    [Google Scholar]
  42. Voth D. E., Ballard J. D. ( 2005). Clostridium difficile toxins: mechanism of action and role in disease. Clin Microbiol Rev 18:247–263 [View Article][PubMed]
    [Google Scholar]
  43. Warny M., Pepin J., Fang A., Killgore G., Thompson A., Brazier J., Frost E., McDonald L. C. ( 2005). Toxin production by an emerging strain of Clostridium difficile associated with outbreaks of severe disease in North America and Europe. Lancet 366:1079–1084 [View Article][PubMed]
    [Google Scholar]
  44. Weese J. S., Wakeford T., Reid-Smith R., Rousseau J., Friendship R. ( 2010). Longitudinal investigation of Clostridium difficile shedding in piglets. Anaerobe 16:501–504 [View Article][PubMed]
    [Google Scholar]
  45. Zaiss N. H., Rupnik M., Kuijper E. J., Harmanus C., Michielsen D., Janssens K., Nübel U. ( 2009). Typing Clostridium difficile strains based on tandem repeat sequences. BMC Microbiol 9:6 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.051953-0
Loading
/content/journal/micro/10.1099/mic.0.051953-0
Loading

Data & Media loading...

Most cited Most Cited RSS feed