1887

Abstract

Rapid identification of hypervirulent strains is essential for preventing their spread. Recent completion of several full-length genomes provided an excellent opportunity to identify potentially unique genes that characterize hypervirulent strains. Based on sequence comparisons between strains we describe two gene insertions into the genome of hypervirulent PCR ribotypes 078 and 027. Analysis of these regions, of 1.7 and 4.2 kb, respectively, revealed that they contain several interesting ORFs. The 078 region is inserted intergenically and introduces an enzyme that is involved in the biosynthesis of several antibiotics. The 027 insert disrupts the thymidylate synthetase () gene and replaces it with an equivalent, catalytically more efficient, gene. Both gene insertions were used to develop ribotype-specific PCRs, which were validated by screening a large strain collection consisting of 68 different PCR ribotypes supplemented with diverse 078 and 027 strains derived from different geographical locations and individual outbreaks. The genetic markers were stably present in the hypervirulent PCR ribotypes 078 and 027, but were also found in several other PCR ribotypes. Comparative analysis of amplified fragment length polymorphisms, PCR ribotype banding patterns and toxin profiles showed that all PCR ribotypes sharing the same insert from phylogenetically coherent clusters. The identified loci are unique to these clusters, to which the hypervirulent ribotypes 078 and 027 belong. This provides valuable information on strains belonging to two distinct lineages within that are highly related to hypervirulent strains.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.051953-0
2011-11-01
2019-10-20
Loading full text...

Full text loading...

/deliver/fulltext/micro/157/11/3113.html?itemId=/content/journal/micro/10.1099/mic.0.051953-0&mimeType=html&fmt=ahah

References

  1. Akerlund T., Persson I., Unemo M., Norén T., Svenungsson B., Wullt M., Burman L. G.. ( 2008;). Increased sporulation rate of epidemic Clostridium difficile type 027/NAP1. . J Clin Microbiol 46:, 1530–1533. [CrossRef][PubMed]
    [Google Scholar]
  2. Alonso R., Muñoz C., Gros S., García de Viedma D., Peláez T., Bouza E.. ( 1999;). Rapid detection of toxigenic Clostridium difficile from stool samples by a nested PCR of toxin B gene. . J Hosp Infect 41:, 145–149. [CrossRef][PubMed]
    [Google Scholar]
  3. Avbersek J., Janezic S., Pate M., Rupnik M., Zidaric V., Logar K., Vengust M., Zemljic M., Pirs T., Ocepek M.. ( 2009;). Diversity of Clostridium difficile in pigs and other animals in Slovenia. . Anaerobe 15:, 252–255. [CrossRef][PubMed]
    [Google Scholar]
  4. Bakker D., Corver J., Harmanus C., Goorhuis A., Keessen E. C., Fawley W. N., Wilcox M. H., Kuijper E. J.. ( 2010;). Relatedness of human and animal Clostridium difficile PCR ribotype 078 isolates determined on the basis of multilocus variable-number tandem-repeat analysis and tetracycline resistance. . J Clin Microbiol 48:, 3744–3749. [CrossRef][PubMed]
    [Google Scholar]
  5. Bauer M. P., Notermans D. W., van Benthem B. H., Brazier J. S., Wilcox M. H., Rupnik M., Monnet D. L., van Dissel J. T., Kuijper E. J..ECDIS Study Group ( 2011;). Clostridium difficile infection in Europe: a hospital-based survey. . Lancet 377:, 63–73. [CrossRef][PubMed]
    [Google Scholar]
  6. Bidet P., Barbut F., Lalande V., Burghoffer B., Petit J. C.. ( 1999;). Development of a new PCR-ribotyping method for Clostridium difficile based on ribosomal RNA gene sequencing. . FEMS Microbiol Lett 175:, 261–266. [CrossRef][PubMed]
    [Google Scholar]
  7. Brazier J. S.. ( 2001;). Typing of Clostridium difficile. . Clin Microbiol Infect 7:, 428–431. [CrossRef][PubMed]
    [Google Scholar]
  8. Chaudhuri R. R., Loman N. J., Snyder L. A., Bailey C. M., Stekel D. J., Pallen M. J.. ( 2008;). xBASE2: a comprehensive resource for comparative bacterial genomics. . Nucleic Acids Res 36: (Database issue), D543–D546. [CrossRef][PubMed]
    [Google Scholar]
  9. Dingle K. E., Griffiths D., Didelot X., Evans J., Vaughan A., Kachrimanidou M., Stoesser N., Jolley K. A., Golubchik T. et al. & other authors ( 2011;). Clinical Clostridium difficile: clonality and pathogenicity locus diversity. . PLoS ONE 6:, e19993. [CrossRef][PubMed]
    [Google Scholar]
  10. Escartin F., Skouloubris S., Liebl U., Myllykallio H.. ( 2008;). Flavin-dependent thymidylate synthase X limits chromosomal DNA replication. . Proc Natl Acad Sci U S A 105:, 9948–9952. [CrossRef][PubMed]
    [Google Scholar]
  11. Esra Önen F., Boum Y., Jacquement C., Spanedda M. V., Jaber N., Scherman D., Myllykallio H., Herscovici J.. ( 2008;). Design, synthesis and evaluation of potent thymidylate synthase X inhibitors. . Bioorg Med Chem Lett 18:, 3628–3631. [CrossRef][PubMed]
    [Google Scholar]
  12. Goorhuis A., Bakker D., Corver J., Debast S. B., Harmanus C., Notermans D. W., Bergwerff A. A., Dekker F. W., Kuijper E. J.. ( 2008;). Emergence of Clostridium difficile infection due to a new hypervirulent strain, polymerase chain reaction ribotype 078. . Clin Infect Dis 47:, 1162–1170. [CrossRef][PubMed]
    [Google Scholar]
  13. Griffiths D., Fawley W., Kachrimanidou M., Bowden R., Crook D. W., Fung R., Golubchik T., Harding R. M., Jeffery K. J. et al. & other authors ( 2010;). Multilocus sequence typing of Clostridium difficile. . J Clin Microbiol 48:, 770–778. [CrossRef][PubMed]
    [Google Scholar]
  14. He M., Sebaihia M., Lawley T. D., Stabler R. A., Dawson L. F., Martin M. J., Holt K. E., Seth-Smith H. M., Quail M. A. et al. & other authors ( 2010;). Evolutionary dynamics of Clostridium difficile over short and long time scales. . Proc Natl Acad Sci U S A 107:, 7527–7532. [CrossRef][PubMed]
    [Google Scholar]
  15. Indra A., Blaschitz M., Kernbichler S., Reischl U., Wewalka G., Allerberger F.. ( 2010;). Mechanisms behind variation in the Clostridium difficile 16S–23S rRNA intergenic spacer region. . J Med Microbiol 59:, 1317–1323. [CrossRef][PubMed]
    [Google Scholar]
  16. Janezic S., Strumbelj I., Rupnik M.. ( 2011;). Use of modified PCR ribotyping for direct detection of Clostridium difficile ribotypes in stool samples. . J Clin Microbiol 49:, 3024–3025. [CrossRef][PubMed]
    [Google Scholar]
  17. Janvilisri T., Scaria J., Thompson A. D., Nicholson A., Limbago B. M., Arroyo L. G., Songer J. G., Gröhn Y. T., Chang Y. F.. ( 2009;). Microarray identification of Clostridium difficile core components and divergent regions associated with host origin. . J Bacteriol 191:, 3881–3891. [CrossRef][PubMed]
    [Google Scholar]
  18. Kallen A. J., Thompson A., Ristaino P., Chapman L., Nicholson A., Sim B. T., Lessa F., Sharapov U., Fadden E. et al. & other authors ( 2009;). Complete restriction of fluoroquinolone use to control an outbreak of Clostridium difficile infection at a community hospital. . Infect Control Hosp Epidemiol 30:, 264–272. [CrossRef][PubMed]
    [Google Scholar]
  19. Kato H., Kato N., Katow S., Maegawa T., Nakamura S., Lyerly D. M.. ( 1999;). Deletions in the repeating sequences of the toxin A gene of toxin A-negative, toxin B-positive Clostridium difficile strains. . FEMS Microbiol Lett 175:, 197–203. [CrossRef][PubMed]
    [Google Scholar]
  20. Keel K., Brazier J. S., Post K. W., Weese S., Songer J. G.. ( 2007;). Prevalence of PCR ribotypes among Clostridium difficile isolates from pigs, calves, and other species. . J Clin Microbiol 45:, 1963–1964. [CrossRef][PubMed]
    [Google Scholar]
  21. Kelly C. P., Pothoulakis C., LaMont J. T.. ( 1994;). Clostridium difficile colitis. . N Engl J Med 330:, 257–262. [CrossRef][PubMed]
    [Google Scholar]
  22. Killgore G., Thompson A., Johnson S., Brazier J., Kuijper E., Pepin J., Frost E. H., Savelkoul P., Nicholson B. et al. & other authors ( 2008;). Comparison of seven techniques for typing international epidemic strains of Clostridium difficile: restriction endonuclease analysis, pulsed-field gel electrophoresis, PCR-ribotyping, multilocus sequence typing, multilocus variable-number tandem-repeat analysis, amplified fragment length polymorphism, and surface layer protein A gene sequence typing. . J Clin Microbiol 46:, 431–437. [CrossRef][PubMed]
    [Google Scholar]
  23. Koehn E. M., Kohen A.. ( 2010;). Flavin-dependent thymidylate synthase: a novel pathway towards thymine. . Arch Biochem Biophys 493:, 96–102. [CrossRef][PubMed]
    [Google Scholar]
  24. Koehn E. M., Fleischmann T., Conrad J. A., Palfey B. A., Lesley S. A., Mathews I. I., Kohen A.. ( 2009;). An unusual mechanism of thymidylate biosynthesis in organisms containing the thyX gene. . Nature 458:, 919–923. [CrossRef][PubMed]
    [Google Scholar]
  25. Lyras D., O’Connor J. R., Howarth P. M., Sambol S. P., Carter G. P., Phumoonna T., Poon R., Adams V., Vedantam G. et al. & other authors ( 2009;). Toxin B is essential for virulence of Clostridium difficile. . Nature 458:, 1176–1179. [CrossRef][PubMed]
    [Google Scholar]
  26. Marsden G. L., Davis I. J., Wright V. J., Sebaihia M., Kuijper E. J., Minton N. P.. ( 2010;). Array comparative hybridisation reveals a high degree of similarity between UK and European clinical isolates of hypervirulent Clostridium difficile. . BMC Genomics 11:, 389. [CrossRef][PubMed]
    [Google Scholar]
  27. McDonald L. C., Killgore G. E., Thompson A., Owens R. C. Jr, Kazakova S. V., Sambol S. P., Johnson S., Gerding D. N.. ( 2005;). An epidemic, toxin gene-variant strain of Clostridium difficile. . N Engl J Med 353:, 2433–2441. [CrossRef][PubMed]
    [Google Scholar]
  28. Merrigan M., Venugopal A., Mallozzi M., Roxas B., Viswanathan V. K., Johnson S., Gerding D. N., Vedantam G.. ( 2010;). Human hypervirulent Clostridium difficile strains exhibit increased sporulation as well as robust toxin production. . J Bacteriol 192:, 4904–4911. [CrossRef][PubMed]
    [Google Scholar]
  29. Pépin J., Valiquette L., Alary M. E., Villemure P., Pelletier A., Forget K., Pépin K., Chouinard D.. ( 2004;). Clostridium difficile-associated diarrhea in a region of Quebec from 1991 to 2003: a changing pattern of disease severity. . CMAJ 171:, 466–472. [CrossRef][PubMed]
    [Google Scholar]
  30. Pépin J., Valiquette L., Cossette B.. ( 2005;). Mortality attributable to nosocomial Clostridium difficile-associated disease during an epidemic caused by a hypervirulent strain in Quebec. . CMAJ 173:, 1037–1042. [CrossRef][PubMed]
    [Google Scholar]
  31. Pirs T., Ocepek M., Rupnik M.. ( 2008;). Isolation of Clostridium difficile from food animals in Slovenia. . J Med Microbiol 57:, 790–792. [CrossRef][PubMed]
    [Google Scholar]
  32. Pituch H., Brazier J. S., Obuch-Woszczatynski P., Wultanska D., Meisel-Mikolajczyk F., Luczak M.. ( 2006;). Prevalence and association of PCR ribotypes of Clostridium difficile isolated from symptomatic patients from Warsaw with macrolide-lincosamide-streptogramin B (MLSB) type resistance. . J Med Microbiol 55:, 207–213. [CrossRef][PubMed]
    [Google Scholar]
  33. Rupnik M., Brazier J. S., Duerden B. I., Grabnar M., Stubbs S. L.. ( 2001;). Comparison of toxinotyping and PCR ribotyping of Clostridium difficile strains and description of novel toxinotypes. . Microbiology 147:, 439–447.[PubMed]
    [Google Scholar]
  34. Rupnik M., Wilcox M. H., Gerding D. N.. ( 2009;). Clostridium difficile infection: new developments in epidemiology and pathogenesis. . Nat Rev Microbiol 7:, 526–536. [CrossRef][PubMed]
    [Google Scholar]
  35. Schwan C., Stecher B., Tzivelekidis T., van Ham M., Rohde M., Hardt W. D., Wehland J., Aktories K.. ( 2009;). Clostridium difficile toxin CDT induces formation of microtubule-based protrusions and increases adherence of bacteria. . PLoS Pathog 5:, e1000626. [CrossRef][PubMed]
    [Google Scholar]
  36. Sciara G., Kendrew S. G., Miele A. E., Marsh N. G., Federici L., Malatesta F., Schimperna G., Savino C., Vallone B.. ( 2003;). The structure of ActVA-Orf6, a novel type of monooxygenase involved in actinorhodin biosynthesis. . EMBO J 22:, 205–215. [CrossRef][PubMed]
    [Google Scholar]
  37. Sebaihia M., Wren B. W., Mullany P., Fairweather N. F., Minton N., Stabler R., Thomson N. R., Roberts A. P., Cerdeño-Tárraga A. M. et al. & other authors ( 2006;). The multidrug-resistant human pathogen Clostridium difficile has a highly mobile, mosaic genome. . Nat Genet 38:, 779–786. [CrossRef][PubMed]
    [Google Scholar]
  38. Söding J.. ( 2005;). Protein homology detection by HMM–HMM comparison. . Bioinformatics 21:, 951–960. [CrossRef][PubMed]
    [Google Scholar]
  39. Spigaglia P., Mastrantonio P.. ( 2002;). Molecular analysis of the pathogenicity locus and polymorphism in the putative negative regulator of toxin production (TcdC) among Clostridium difficile clinical isolates. . J Clin Microbiol 40:, 3470–3475. [CrossRef][PubMed]
    [Google Scholar]
  40. Stabler R. A., Gerding D. N., Songer J. G., Drudy D., Brazier J. S., Trinh H. T., Witney A. A., Hinds J., Wren B. W.. ( 2006;). Comparative phylogenomics of Clostridium difficile reveals clade specificity and microevolution of hypervirulent strains. . J Bacteriol 188:, 7297–7305. [CrossRef][PubMed]
    [Google Scholar]
  41. Stabler R. A., He M., Dawson L., Martin M., Valiente E., Corton C., Lawley T. D., Sebaihia M., Quail M. A. et al. & other authors ( 2009;). Comparative genome and phenotypic analysis of Clostridium difficile 027 strains provides insight into the evolution of a hypervirulent bacterium. . Genome Biol 10:, R102. [CrossRef][PubMed]
    [Google Scholar]
  42. Voth D. E., Ballard J. D.. ( 2005;). Clostridium difficile toxins: mechanism of action and role in disease. . Clin Microbiol Rev 18:, 247–263. [CrossRef][PubMed]
    [Google Scholar]
  43. Warny M., Pepin J., Fang A., Killgore G., Thompson A., Brazier J., Frost E., McDonald L. C.. ( 2005;). Toxin production by an emerging strain of Clostridium difficile associated with outbreaks of severe disease in North America and Europe. . Lancet 366:, 1079–1084. [CrossRef][PubMed]
    [Google Scholar]
  44. Weese J. S., Wakeford T., Reid-Smith R., Rousseau J., Friendship R.. ( 2010;). Longitudinal investigation of Clostridium difficile shedding in piglets. . Anaerobe 16:, 501–504. [CrossRef][PubMed]
    [Google Scholar]
  45. Zaiss N. H., Rupnik M., Kuijper E. J., Harmanus C., Michielsen D., Janssens K., Nübel U.. ( 2009;). Typing Clostridium difficile strains based on tandem repeat sequences. . BMC Microbiol 9:, 6. [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.051953-0
Loading
/content/journal/micro/10.1099/mic.0.051953-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error