1887

Abstract

For a bio-based economy, microbial lipids offer a potential solution as alternative feedstocks in the oleochemical industry. The existing genome data for the promising strains, oleaginous yeasts and fungi, allowed us to investigate candidate orthologous sequences that participate in their oleaginicity. Comparative genome analysis of the non-oleaginous (, and ) and oleaginous strains (, , and ) showed that 209 orthologous protein sequences of the oleaginous microbes were distributed over several processes of the cells. Based on the 41 sequences categorized by metabolism, putative routes potentially involved in the generation of precursors for fatty acid and lipid synthesis, particularly acetyl-CoA, were then identified that were not present in the non-oleaginous strains. We found a set of the orthologous oleaginous proteins that was responsible for the biosynthesis of this key two-carbon metabolite through citrate catabolism, fatty acid β-oxidation, leucine metabolism and lysine degradation. Our findings suggest a relationship between carbohydrate, lipid and amino acid metabolism in the biosynthesis of acetyl-CoA, which contributes to the lipid production of oleaginous microbes.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.051946-0
2012-01-01
2020-07-10
Loading full text...

Full text loading...

/deliver/fulltext/micro/158/1/217.html?itemId=/content/journal/micro/10.1099/mic.0.051946-0&mimeType=html&fmt=ahah

References

  1. Ageitos J. M., Vallejo J. A., Veiga-Crespo P., Villa T. G.. ( 2011;). Oily yeasts as oleaginous cell factories. Appl Microbiol Biotechnol90:1219–1227 [CrossRef][PubMed]
    [Google Scholar]
  2. Altschul S. F., Madden T. L., Schäffer A. A., Zhang J., Zhang Z., Miller W., Lipman D. J.. ( 1997;). Gapped blast and psi-blast: a new generation of protein database search programs. Nucleic Acids Res25:3389–3402 [CrossRef][PubMed]
    [Google Scholar]
  3. Athenstaedt K., Jolivet P., Boulard C., Zivy M., Negroni L., Nicaud J. M., Chardot T.. ( 2006;). Lipid particle composition of the yeast Yarrowia lipolytica depends on the carbon source. Proteomics6:1450–1459 [CrossRef][PubMed]
    [Google Scholar]
  4. Beopoulos A., Mrozova Z., Thevenieau F., Le Dall M. T., Hapala I., Papanikolaou S., Chardot T., Nicaud J. M.. ( 2008;). Control of lipid accumulation in the yeast Yarrowia lipolytica. . Appl Environ Microbiol74:7779–7789 [CrossRef][PubMed]
    [Google Scholar]
  5. Beopoulos A., Cescut J., Haddouche R., Uribelarrea J. L., Molina-Jouve C., Nicaud J. M.. ( 2009;). Yarrowia lipolytica as a model for bio-oil production. Prog Lipid Res48:375–387 [CrossRef][PubMed]
    [Google Scholar]
  6. Beopoulos A., Nicaud J. M., Gaillardin C.. ( 2011;). An overview of lipid metabolism in yeasts and its impact on biotechnological processes. Appl Microbiol Biotechnol90:1193–1206 [CrossRef][PubMed]
    [Google Scholar]
  7. Certik M., Megova J., Horenitzky R.. ( 1999;). Effect of nitrogen sources on the activities of lipogenic enzymes in oleaginous fungus Cunninghamella echinulata. . J Gen Appl Microbiol45:289–293 [CrossRef][PubMed]
    [Google Scholar]
  8. Claros M. G., Vincens P.. ( 1996;). Computational method to predict mitochondrially imported proteins and their targeting sequences. Eur J Biochem241:779–786 [CrossRef][PubMed]
    [Google Scholar]
  9. Courchesne N. M. D., Parisien A., Wang B., Lan C. Q.. ( 2009;). Enhancement of lipid production using biochemical, genetic and transcription factor engineering approaches. J Biotechnol141:31–41 [CrossRef][PubMed]
    [Google Scholar]
  10. Daum G., Wagner A., Czabany T., Athenstaedt K.. ( 2007;). Dynamics of neutral lipid storage and mobilization in yeast. Biochimie89:243–248 [CrossRef][PubMed]
    [Google Scholar]
  11. Dietrich F. S., Voegeli S., Brachat S., Lerch A., Gates K., Steiner S., Mohr C., Pöhlmann R., Luedi P.. & other authors ( 2004;). The Ashbya gossypii genome as a tool for mapping the ancient Saccharomyces cerevisiae genome. Science304:304–307 [CrossRef][PubMed]
    [Google Scholar]
  12. Dobson R. C., Griffin M. D., Roberts S. J., Gerrard J. A.. ( 2004;). Dihydrodipicolinate synthase (DHDPS) from Escherichia coli displays partial mixed inhibition with respect to its first substrate, pyruvate. Biochimie86:311–315 [CrossRef][PubMed]
    [Google Scholar]
  13. Dobson P. D., Smallbone K., Jameson D., Simeonidis E., Lanthaler K., Pir P., Lu C., Swainston N., Dunn W. B.. & other authors ( 2010;). Further developments towards a genome-scale metabolic model of yeast. BMC Syst Biol4:145 [CrossRef][PubMed]
    [Google Scholar]
  14. Dulermo T., Nicaud J. M.. ( 2011;). Involvement of the G3P shuttle and β-oxidation pathway in the control of TAG synthesis and lipid accumulation in Yarrowia lipolytica. . Metab Eng13:482–491 [CrossRef][PubMed]
    [Google Scholar]
  15. Emanuelsson O., Nielsen H., Brunak S., von Heijne G.. ( 2000;). Predicting subcellular localization of proteins based on their N-terminal amino acid sequence. J Mol Biol300:1005–1016 [CrossRef][PubMed]
    [Google Scholar]
  16. Finn R. D., Mistry J., Tate J., Coggill P., Heger A., Pollington J. E., Gavin O. L., Gunasekaran P., Ceric G.. & other authors ( 2010;). The Pfam protein families database. Nucleic Acids Res38:Database issueD211–D222 [CrossRef][PubMed]
    [Google Scholar]
  17. Goffeau A., Barrell B. G., Bussey H., Davis R. W., Dujon B., Feldmann H., Galibert F., Hoheisel J. D., Jacq C.. & other authors ( 1996;). Life with 6000 genes. Science274:546–567 [CrossRef][PubMed]
    [Google Scholar]
  18. Harris M. A., Clark J., Ireland A., Lomax J., Ashburner M., Foulger R., Eilbeck K., Lewis S., Marshall B.. Gene Ontology Consortium ( 2004;). The Gene Ontology (GO) database and informatics resource. Nucleic Acids Res32:Database issueD258–D261 [CrossRef][PubMed]
    [Google Scholar]
  19. Harris R. A., Joshi M., Jeoung N. H., Obayashi M.. ( 2005;). Overview of the molecular and biochemical basis of branched-chain amino acid catabolism. J Nutr135:Suppl.1527S–1530S[PubMed]
    [Google Scholar]
  20. Jones D. T., Taylor W. R., Thornton J. M.. ( 1992;). The rapid generation of mutation data matrices from protein sequences. Comput Appl Biosci8:275–282[PubMed]
    [Google Scholar]
  21. Jones T., Federspiel N. A., Chibana H., Dungan J., Kalman S., Magee B. B., Newport G., Thorstenson Y. R., Agabian N.. & other authors ( 2004;). The diploid genome sequence of Candida albicans. . Proc Natl Acad Sci U S A101:7329–7334 [CrossRef][PubMed]
    [Google Scholar]
  22. Kamisaka Y., Tomita N., Kimura K., Kainou K., Uemura H.. ( 2007;). DGA1 (diacylglycerol acyltransferase gene) overexpression and leucine biosynthesis significantly increase lipid accumulation in the Δsnf2 disruptant of Saccharomyces cerevisiae . Biochem J408:61–68 [CrossRef][PubMed]
    [Google Scholar]
  23. Kanehisa M., Goto S., Kawashima S., Okuno Y., Hattori M.. ( 2004;). The KEGG resource for deciphering the genome. Nucleic Acids Res32:Database issueD277–D280 [CrossRef][PubMed]
    [Google Scholar]
  24. Katoh K., Toh H.. ( 2008;). Recent developments in the mafft multiple sequence alignment program. Brief Bioinform9:286–298 [CrossRef][PubMed]
    [Google Scholar]
  25. Kaur P., Worgan J. T.. ( 1982;). Lipid production by Aspergillus oryzae from starch substrates. Eur J Appl Microbiol Biotechnol16:126–130 [CrossRef]
    [Google Scholar]
  26. Laoteng K., Čertik M., Cheevadhanarak S.. ( 2011;). Mechanisms controlling lipid accumulation and polyunsaturated fatty acid synthesis in oleaginous fungi. Chem Pap65:97–103 [CrossRef]
    [Google Scholar]
  27. Lin H., Cheng W., Ding H. T., Chen X. J., Zhou Q. F., Zhao Y. H.. ( 2010;). Direct microbial conversion of wheat straw into lipid by a cellulolytic fungus of Aspergillus oryzae A-4 in solid-state fermentation. Bioresour Technol101:7556–7562 [CrossRef][PubMed]
    [Google Scholar]
  28. Liu B., Zhao Z.. ( 2007;). Biodiesel production by direct methanolysis of oleaginous microbial biomass. J Chem Technol Biotechnol82:775–780 [CrossRef]
    [Google Scholar]
  29. Ma L. J., Ibrahim A. S., Skory C., Grabherr M. G., Burger G., Butler M., Elias M., Idnurm A., Lang B. F.. & other authors ( 2009;). Genomic analysis of the basal lineage fungus Rhizopus oryzae reveals a whole-genome duplication. PLoS Genet5:e1000549 [CrossRef][PubMed]
    [Google Scholar]
  30. Machida M., Asai K., Sano M., Tanaka T., Kumagai T., Terai G., Kusumoto K., Arima T., Akita O.. & other authors ( 2005;). Genome sequencing and analysis of Aspergillus oryzae. . Nature438:1157–1161 [CrossRef][PubMed]
    [Google Scholar]
  31. Meng X., Yang J., Xu X., Zhang L., Nie Q., Xian M.. ( 2009;). Biodiesel production from oleaginous microorganisms. Renew Energy34:1–5 [CrossRef]
    [Google Scholar]
  32. Neuberger G., Maurer-Stroh S., Eisenhaber B., Hartig A., Eisenhaber F.. ( 2003;). Motif refinement of the peroxisomal targeting signal 1 and evaluation of taxon-specific differences. J Mol Biol328:567–579 [CrossRef][PubMed]
    [Google Scholar]
  33. Nookaew I., Jewett M. C., Meechai A., Thammarongtham C., Laoteng K., Cheevadhanarak S., Nielsen J., Bhumiratana S.. ( 2008;). The genome-scale metabolic model iIN800 of Saccharomyces cerevisiae and its validation: a scaffold to query lipid metabolism. BMC Syst Biol2:71 [CrossRef][PubMed]
    [Google Scholar]
  34. Oliver D. J., Nikolau B. J., Wurtele E. S.. ( 2009;). Acetyl-CoA – life at the metabolic nexus. Plant Sci176:597–601 [CrossRef]
    [Google Scholar]
  35. Picataggio S., Rohrer T., Deanda K., Lanning D., Reynolds R., Mielenz J., Eirich L. D.. ( 1992;). Metabolic engineering of Candida tropicalis for the production of long-chain dicarboxylic acids. Biotechnology (N Y)10:894–898 [CrossRef][PubMed]
    [Google Scholar]
  36. Ratledge C.. ( 1986;). The potential of microorganisms for oil production – a review of recent publications. Proceedings of World Conference on Emerging Technologies in the Fats and Oils Industry318–330 Baldwin A. R.. Champaign, IL: American Oil Chemists’ Society;
    [Google Scholar]
  37. Ratledge C.. ( 2002;). Regulation of lipid accumulation in oleaginous micro-organisms. Biochem Soc Trans30:1047–1050 [CrossRef][PubMed]
    [Google Scholar]
  38. Ratledge C.. ( 2004;). Fatty acid biosynthesis in microorganisms being used for Single Cell Oil production. Biochimie86:807–815 [CrossRef][PubMed]
    [Google Scholar]
  39. Ratledge C., Wynn J. P.. ( 2002;). The biochemistry and molecular biology of lipid accumulation in oleaginous microorganisms. Adv Appl Microbiol51:1–51 [CrossRef][PubMed]
    [Google Scholar]
  40. Ruenwai R., Cheevadhanarak S., Laoteng K.. ( 2009;). Overexpression of acetyl-CoA carboxylase gene of Mucor rouxii enhanced fatty acid content in Hansenula polymorpha. . Mol Biotechnol42:327–332 [CrossRef][PubMed]
    [Google Scholar]
  41. Ruenwai R., Cheevadhanarak S., Rachdawong S., Tanticharoen M., Laoteng K.. ( 2010;). Oxygen-induced expression of Δ6-, Δ9- and Δ12-desaturase genes modulates fatty acid composition and lipid content in Mucor rouxii . Appl Microbiol Biotechnol86:327–334 [CrossRef][PubMed]
    [Google Scholar]
  42. Saitou N., Nei M.. ( 1987;). The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol4:406–425[PubMed]
    [Google Scholar]
  43. Santos-Fo F., Fill T. P., Nakamura J., Monteiro M. R., Rodrigues-Fo E.. ( 2011;). Endophytic fungi as a source of biofuel precursors. J Microbiol Biotechnol21:728–733 [CrossRef][PubMed]
    [Google Scholar]
  44. Schulz H.. ( 1996;). Oxidation of fatty acids. Biochemistry of Lipids, Lipoproteins and Membranes75–99 Vance D. E., Vance J. E.. Amsterdam: Elsevier Science; [CrossRef]
    [Google Scholar]
  45. Shen Y. Q., Burger G.. ( 2009;). Plasticity of a key metabolic pathway in fungi. Funct Integr Genomics9:145–151 [CrossRef][PubMed]
    [Google Scholar]
  46. Sherman D. J., Martin T., Nikolski M., Cayla C., Souciet J. L., Durrens P.. Génolevures Consortium ( 2009;). Génolevures: protein families and synteny among complete hemiascomycetous yeast proteomes and genomes. Nucleic Acids Res37:Database issueD550–D554 [CrossRef][PubMed]
    [Google Scholar]
  47. Song Y., Wynn J. P., Li Y., Grantham D., Ratledge C.. ( 2001;). A pre-genetic study of the isoforms of malic enzyme associated with lipid accumulation in Mucor circinelloides. . Microbiology147:1507–1515[PubMed]
    [Google Scholar]
  48. Strijbis K., Distel B.. ( 2010;). Intracellular acetyl unit transport in fungal carbon metabolism. Eukaryot Cell9:1809–1815 [CrossRef][PubMed]
    [Google Scholar]
  49. Suzuki O.. ( 1991;). Recent trends of oleochemicals by biotechnology. Proceedings of World Conference on Oleochemicals into the 21st Century221–230 Applewhite T. H. F.. Champaign, IL: American Oil Chemists’ Society;
    [Google Scholar]
  50. Tatusov R. L., Fedorova N. D., Jackson J. D., Jacobs A. R., Kiryutin B., Koonin E. V., Krylov D. M., Mazumder R., Mekhedov S. L.. & other authors ( 2003;). The COG database: an updated version includes eukaryotes. BMC Bioinformatics4:41 [CrossRef][PubMed]
    [Google Scholar]
  51. Vauterin M., Frankard V., Jacobs M.. ( 1999;). The Arabidopsis thaliana dhdps gene encoding dihydrodipicolinate synthase, key enzyme of lysine biosynthesis, is expressed in a cell-specific manner. Plant Mol Biol39:695–708 [CrossRef][PubMed]
    [Google Scholar]
  52. Vicente G., Bautista L. F., Gutierrez F. J., Rodriguez R., Martinez V., Rodriguez-Frometa R. A., Ruiz-Vazquez R. M., Torres-Martinez S., Garre V.. ( 2010;). Direct transformation of fungal biomass from submerged cultures into biodiesel. Energy Fuels24:3173–3178 [CrossRef]
    [Google Scholar]
  53. Waché Y., Aguedo M., Nicaud J. M., Belin J. M.. ( 2003;). Catabolism of hydroxyacids and biotechnological production of lactones by Yarrowia lipolytica. . Appl Microbiol Biotechnol61:393–404[PubMed][CrossRef]
    [Google Scholar]
  54. Wysocki S. J., Hähnel R.. ( 1986;). 3-Hydroxy-3-methylglutaryl-coenzyme A lyase deficiency: a review. J Inherit Metab Dis9:225–233 [CrossRef][PubMed]
    [Google Scholar]
  55. Xu H., Andi B., Qian J., West A. H., Cook P. F.. ( 2006;). The α-aminoadipate pathway for lysine biosynthesis in fungi. Cell Biochem Biophys46:43–64 [CrossRef][PubMed]
    [Google Scholar]
  56. Zhang Y., Adams I. P., Ratledge C.. ( 2007;). Malic enzyme: the controlling activity for lipid production? Overexpression of malic enzyme in Mucor circinelloides leads to a 2.5-fold increase in lipid accumulation. Microbiology153:2013–2025 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.051946-0
Loading
/content/journal/micro/10.1099/mic.0.051946-0
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error