1887

Abstract

The plant-pathogenic fungus (anamorph ) secretes high levels of an FAD-dependent glucose dehydrogenase (GDH) when grown on tomato juice-supplemented media. To elucidate its molecular and catalytic properties, GDH was produced in submerged culture. The highest volumetric activity was obtained in shaking flasks after 6 days of cultivation (3400 U l, 4.2 % of total extracellular protein). GDH is a monomeric protein with an isoelectric point of 5.6. The molecular masses of the glycoforms ranged from 95 to 135 kDa, but after deglycosylation, a single 68 kDa band was obtained. The absorption spectrum is typical for an FAD-containing enzyme with maxima at 370 and 458 nm and the cofactor is non-covalently bound. The preferred substrates are glucose and xylose. Suitable electron acceptors are quinones, phenoxy radicals, 2,6-dichloroindophenol, ferricyanide and ferrocenium hexafluorophosphate. In contrast, oxygen turnover is very low. The GDH-encoding gene was cloned and phylogenetic analysis of the translated protein reveals its affiliation to the GMC family of oxidoreductases. The proposed function of this quinone and phenoxy radical reducing enzyme is to neutralize the action of plant laccase, phenoloxidase or peroxidase activities, which are increased in infected plants to evade fungal attack.

Funding
This study was supported by the:
  • Austrian Academy of Science (Award 11322)
  • European Commission (Award NMP4-SL-2009-229255)
Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.051904-0
2011-11-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/micro/157/11/3203.html?itemId=/content/journal/micro/10.1099/mic.0.051904-0&mimeType=html&fmt=ahah

References

  1. Aiba H. ( 2007). Novel glucose dehydrogenase. US Patent 2007/0105174
    [Google Scholar]
  2. Anand T., Bhaskaran R., Raguchander T., Samiyappan R., Prakasam V., Gopalakrishnan C. ( 2009). Defence responses of chilli fruits to Colletotrichum capsici and Alternaria alternata. . Biol Plant 53:553–559 [View Article]
    [Google Scholar]
  3. Bailey J. A., Jeger M. J. ( 1992). Colletotrichum: Biology, Pathology and Control Wallingford, UK: CAB International;
    [Google Scholar]
  4. Bak T.-G. ( 1967a). Studies on glucose dehydrogenase of Aspergillus oryzae. II. Purification and physical and chemical properties. Biochim Biophys Acta 139:277–293[PubMed] [CrossRef]
    [Google Scholar]
  5. Bak T.-G. ( 1967b). Studies on glucose dehydrogenase of Aspergillus oryzae. III. General enzymatic properties. Biochim Biophys Acta 146:317–327 [CrossRef]
    [Google Scholar]
  6. Bak T.-G., Sato R. ( 1967). Studies on the glucose dehydrogenase of Aspergillus oryzae. I. Induction of its synthesis by rho-benzoquinone and hydroquinone. Biochim Biophys Acta 139:265–276 [CrossRef]
    [Google Scholar]
  7. Cavener D. R., MacIntyre R. J. ( 1983). Biphasic expression and function of glucose dehydrogenase in Drosophila melanogaster . Proc Natl Acad Sci U S A 80:6286–6288 [CrossRef]
    [Google Scholar]
  8. Cavener D. R. ( 1992). GMC oxidoreductases: A newly defined family of homologous proteins with deverse catalytic activities. J Mol Biol 223:811–814 [CrossRef]
    [Google Scholar]
  9. Collmer A., Keen N. T. ( 1986). The role of pectic enzymes in plant pathogenesis. Annu Rev Phytopathol 24:383–409 [View Article]
    [Google Scholar]
  10. Cooper R. M., Wood R. K. S. ( 1975). Regulation of synthesis of cell wall degrading enzymes by Veticillium albo-atrum and Fusarium oxysporum f. sp. lycopersici. . Physiol Plant Pathol 5:135–156 [View Article]
    [Google Scholar]
  11. Flaishman M. A., Kolattukudy P. E. ( 1994). Timing of fungal invasion using host’s ripening hormone as a signal. Proc Natl Acad Sci U S A 91:6579–6583 [View Article][PubMed]
    [Google Scholar]
  12. Galhaup C., Haltrich D. ( 2001). Enhanced formation of laccase activity by the white-rot fungus Trametes pubescens in the presence of copper. Appl Microbiol Biotechnol 56:225–232 [View Article][PubMed]
    [Google Scholar]
  13. Harreither W., Sygmund C., Augustin M., Narciso M., Rabinovich M. L., Gorton L., Haltrich D., Ludwig R. ( 2011). Catalytic properties and classification of cellobiose dehydrogenases from ascomycetes. Appl Environ Microbiol 77:1804–1815 [View Article][PubMed]
    [Google Scholar]
  14. Kalisz H. M., Hecht H.-J., Schomburg D., Schmid R. D. ( 1991). Effects of carbohydrate depletion on the structure, stability and activity of glucose oxidase from Aspergillus niger . Biochim Biophys Acta 1080:138–142 [View Article][PubMed]
    [Google Scholar]
  15. Kittl R., Sygmund C., Halada P., Volc J., Divne C., Haltrich D., Peterbauer C. K. ( 2008). Molecular cloning of three pyranose dehydrogenase-encoding genes from Agaricus meleagris and analysis of their expression by real-time RT-PCR. Curr Genet 53:117–127 [View Article][PubMed]
    [Google Scholar]
  16. Latunde-Dada A. O. ( 2001). Colletotrichum: tales of forcible entry, stealth, transient confinement and breakout. Mol Plant Pathol 2:187–198 [View Article][PubMed]
    [Google Scholar]
  17. Liers C., Ullrich R., Pecyna M., Schlosser D., Hofrichter M. ( 2007). Production, purification and partial enzymatic and molecular characterization of a laccase from the wood-rotting ascomycete Xylaria polymorpha. . Enzyme Microb Technol 41:785–793 [View Article]
    [Google Scholar]
  18. Lovallo N., Cox-Foster D. L. ( 1999). Alteration in FAD-glucose dehydrogenase activity and hemocyte behavior contribute to initial disruption of Manduca sexta immune response to Cotesia congregata parasitoids. J Insect Physiol 45:1037–1048 [View Article]
    [Google Scholar]
  19. Ludwig R., Ozga M., Zamocky M., Peterbauer C., Kulbe K. D., Haltrich D. ( 2004). Continuous enzymatic regeneration of electron acceptors used by flavoenzymes: cellobiose dehydrogenase-catalyzed production of labtobionic acid as an example. Biocatalysis Biotransform 22:97–104 [View Article]
    [Google Scholar]
  20. Macheroux P. ( 1999). UV-visible spectroscopy as a tool to study flavoproteins. Flavoprotein Protocols1–7 Chapman S. K., Reid G. A. Totowa, NJ: Humana Press; [View Article]
    [Google Scholar]
  21. Medeiros L. V., Maciel D. B., Medeiros V. V., Houllou Kido L. M., Oliveira N. T. ( 2010). pelB gene in isolates of Colletotrichum gloeosporioides from several hosts. Genet Mol Res 9:661–673 [View Article][PubMed]
    [Google Scholar]
  22. Morpeth F. ( 1991). Cellobiose oxidoreductases. Chemistry and Biochemistry of Flavoenzymes337–348 Mueller F. Boca Raton, London: CRC Press;
    [Google Scholar]
  23. Mueangtoom K., Kittl R., Mann O., Haltrich D., Ludwig R. ( 2010). Low pH dye decolorization with ascomycete Lamprospora wrightii laccase. Biotechnol J 5:857–870 [View Article][PubMed]
    [Google Scholar]
  24. Ogura Y. ( 1951). Studies on the glucose dehydrogenase of Aspergillus oryzae. . J Biochem 38:75–84
    [Google Scholar]
  25. Okuda-Shimazaki J., Kakehi N., Yamazaki T., Tomiyama M., Sode K. ( 2008). Biofuel cell system employing thermostable glucose dehydrogenase. Biotechnol Lett 30:1753–1758 [View Article][PubMed]
    [Google Scholar]
  26. Omura H., Sanada H., Yada T., Morita T., Kuyama M., Ikeda T., Kano K., Tsujimura S. ( 2010). Coenzyme-binding glucose dehydrogenase. European Patent no. EP1584675 http://www.freepatentsonline.com/EP1584675.html
    [Google Scholar]
  27. Perfect S. E., Hughes H. B., O’Connell R. J., Green J. R. ( 1999). Colletotrichum: A model genus for studies on pathology and fungal–plant interactions. Fungal Genet Biol 27:186–198 [View Article][PubMed]
    [Google Scholar]
  28. Sachslehner A., Haltrich D., Nidetzky B., Kulbe K. D. ( 1997). Production of hemicellulose- and cellulose-degrading enzymes by various strains of Sclerotium rolfsii. . Appl Biochem Biotechnol 63–65:189–201 [View Article][PubMed]
    [Google Scholar]
  29. Semashko T. V., Mikhailova R. V., Eremin A. N. ( 2003). Extracellular glucose oxidase of Penicillium funiculosum 46.1. Appl Biochem Microbiol 39:368–374 [View Article]
    [Google Scholar]
  30. Sode K., Tsugawa W., Yamazaki T., Watanabe M., Ogasawara N., Tanaka M. ( 1996). A novel thermostable glucose dehydrogenase varying temperature properties by altering its quaternary structures. Enzyme Microb Technol 19:82–85 [View Article]
    [Google Scholar]
  31. Tamura K., Peterson D., Peterson N., Stecher G., Nei M., Kumar S. ( 2011). MEGA5: Molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731–2739 [View Article][PubMed]
    [Google Scholar]
  32. Tsuji Y., Kitabayashi M., Kishimoto T., Nishiya Y. ( 2010). Glucose dehydrogenase from Aspergillus oryzae . US patent no. 7655130 B2 http://ip.com/patent/US7655130
    [Google Scholar]
  33. Van Hecke W., Bhagwat A., Ludwig R., Dewulf J., Haltrich D., Van Langenhove H. ( 2009). Kinetic modeling of a bi-enzymatic system for efficient conversion of lactose to lactobionic acid. Biotechnol Bioeng 102:1475–1482 [View Article][PubMed]
    [Google Scholar]
  34. Witt S., Singh M., Kalisz H. M. ( 1998). Structural and kinetic properties of nonglycosylated recombinant Penicillium amagasakiense glucose oxidase expressed in Escherichia coli. . Appl Environ Microbiol 64:1405–1411[PubMed]
    [Google Scholar]
  35. Yamazaki T., Tsugawa W., Sode K. ( 1999). Subunit analyses of a novel thermostable glucose dehydrogenase showing different temperature properties according to its quaternary structure. Appl Biochem Biotechnol 77:325–335 [View Article]
    [Google Scholar]
  36. Zamocky M., Ludwig R., Peterbauer C., Hallberg B. M., Divne C., Nicholls P., Haltrich D. ( 2006). Cellobiose dehydrogenase – a flavocytochrome from wood-degrading, phytopathogenic and saprotropic fungi. Curr Protein Pept Sci 7:255–280 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.051904-0
Loading
/content/journal/micro/10.1099/mic.0.051904-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error