1887

Abstract

Penicillin production in is controlled by PcVelA and PcLaeA, two components of the regulatory -like complex. Comparative microarray analysis with mutants lacking PcVelA or PcLaeA revealed a set of 62 common genes affected by the loss of both components. A downregulated gene in both knockout strains is , potentially encoding a class V chitinase. Under nutrient-depleted conditions, transcript levels of are strongly upregulated, and the gene product contributes to more than 50 % of extracellular chitinase activity. Functional characterization by generating -disruption strains revealed that PcChiB1 is responsible for cell wall integrity and pellet formation in Further, fluorescence microscopy with a DsRed-labelled chitinase suggests a cell wall association of the protein. An unexpected phenotype occurred when knockout strains were grown on media containing -acetylglucosamine as the sole C and N source, where, in contrast to the recipient, a penicillin producer strain, the mutants and an ancestral strain show distinct mycelial growth. We discuss the relevance of this class V chitinase for morphology in an industrially important fungus.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.051896-0
2011-11-01
2019-12-16
Loading full text...

Full text loading...

/deliver/fulltext/micro/157/11/3036.html?itemId=/content/journal/micro/10.1099/mic.0.051896-0&mimeType=html&fmt=ahah

References

  1. Adams D. J. . ( 2004; ). Fungal cell wall chitinases and glucanases. . Microbiology 150:, 2029–2035. [CrossRef] [PubMed]
    [Google Scholar]
  2. Arst H. N. Jr , Cove D. J. . ( 1973; ). Nitrogen metabolite repression in Aspergillus nidulans . . Mol Gen Genet 126:, 111–141. [CrossRef] [PubMed]
    [Google Scholar]
  3. Backus M. P. , Stauffer J. F. , Johnson M. J. . ( 1946; ). Penicillin yields from new mold strains. . J Am Chem Soc 68:, 152–153. [CrossRef] [PubMed]
    [Google Scholar]
  4. Bartnicki-Garcia S. . ( 1973; ). Fundamental aspects of hyphal morphogenesis. . In Microbial Differentiation, pp. 245–267. Edited by Asworth J. M. , Smith J. E. . . London:: Cambridge University Press;.
    [Google Scholar]
  5. Bayram Ö. , Krappmann S. , Ni M. , Bok J. W. , Helmstaedt K. , Valerius O. , Braus-Stromeyer S. , Kwon N. J. , Keller N. P. et al. & other authors ( 2008a; ). VelB/VeA/LaeA complex coordinates light signal with fungal development and secondary metabolism. . Science 320:, 1504–1506. [CrossRef] [PubMed]
    [Google Scholar]
  6. Bayram Ö. , Krappmann S. , Seiler S. , Vogt N. , Braus G. H. . ( 2008b; ). Neurospora crassa ve-1 affects asexual conidiation. . Fungal Genet Biol 45:, 127–138. [CrossRef] [PubMed]
    [Google Scholar]
  7. Bendtsen J. D. , Nielsen H. , von Heijne G. , Brunak S. . ( 2004; ). Improved prediction of signal peptides: SignalP 3.0. . J Mol Biol 340:, 783–795. [CrossRef] [PubMed]
    [Google Scholar]
  8. Bok J. W. , Keller N. P. . ( 2004; ). LaeA, a regulator of secondary metabolism in Aspergillus spp. . Eukaryot Cell 3:, 527–535. [CrossRef] [PubMed]
    [Google Scholar]
  9. Bowman S. M. , Piwowar A. , Al Dabbous M. , Vierula J. , Free S. J. . ( 2006; ). Mutational analysis of the glycosylphosphatidylinositol (GPI) anchor pathway demonstrates that GPI-anchored proteins are required for cell wall biogenesis and normal hyphal growth in Neurospora crassa . . Eukaryot Cell 5:, 587–600. [CrossRef] [PubMed]
    [Google Scholar]
  10. Bradford M. M. . ( 1976; ). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. . Anal Biochem 72:, 248–254. [CrossRef] [PubMed]
    [Google Scholar]
  11. Calvo A. M. . ( 2008; ). The VeA regulatory system and its role in morphological and chemical development in fungi. . Fungal Genet Biol 45:, 1053–1061. [CrossRef] [PubMed]
    [Google Scholar]
  12. Cantarel B. L. , Coutinho P. M. , Rancurel C. , Bernard T. , Lombard V. , Henrissat B. . ( 2009; ). The Carbohydrate-Active EnZymes database (CAZy): an expert resource for glycogenomics. . Nucleic Acids Res 37: (Database issue), D233–D238. [CrossRef] [PubMed]
    [Google Scholar]
  13. Cary J. W. , OBrian G. R. , Nielsen D. M. , Nierman W. , Harris-Coward P. , Yu J. , Bhatnagar D. , Cleveland T. E. , Payne G. A. , Calvo A. M. . ( 2007; ). Elucidation of veA-dependent genes associated with aflatoxin and sclerotial production in Aspergillus flavus by functional genomics. . Appl Microbiol Biotechnol 76:, 1107–1118. [CrossRef] [PubMed]
    [Google Scholar]
  14. Díez B. , Rodríguez-Sáiz M. , de la Fuente J. L. , Moreno M. Á. , Barredo J. L. . ( 2005; ). The nagA gene of Penicillium chrysogenum encoding β-N-acetylglucosaminidase. . FEMS Microbiol Lett 242:, 257–264. [CrossRef] [PubMed]
    [Google Scholar]
  15. Donzelli B. G. , Harman G. E. . ( 2001; ). Interaction of ammonium, glucose, and chitin regulates the expression of cell wall-degrading enzymes in Trichoderma atroviride strain P1. . Appl Environ Microbiol 67:, 5643–5647. [CrossRef] [PubMed]
    [Google Scholar]
  16. Dowzer C. E. , Kelly J. M. . ( 1989; ). Cloning of the creA gene from Aspergillus nidulans: a gene involved in carbon catabolite repression. . Curr Genet 15:, 457–459. [CrossRef] [PubMed]
    [Google Scholar]
  17. Dreyer J. , Eichhorn H. , Friedlin E. , Kürnsteiner H. , Kück U. . ( 2007; ). A homologue of the Aspergillus velvet gene regulates both cephalosporin C biosynthesis and hyphal fragmentation in Acremonium chrysogenum . . Appl Environ Microbiol 73:, 3412–3422. [CrossRef] [PubMed]
    [Google Scholar]
  18. Elander R. . ( 1983; ). Strain improvement and preservation of beta-lactam producing microorganisms. . In Antibiotics Containing the Beta-Lactam Structure I, pp. 97–146. Edited by Demain A. L. , Solomon N. . . Berlin, Heidelberg, New York:: Springer-Verlag;.
    [Google Scholar]
  19. Elorza M. V. , Rico H. , Sentandreu R. . ( 1983; ). Calcofluor white alters the assembly of chitin fibrils in Saccharomyces cerevisiae and Candida albicans cells. . J Gen Microbiol 129:, 1577–1582.[PubMed]
    [Google Scholar]
  20. Escott G. M. , Hearn V. M. , Adams D. J. . ( 1998; ). Inducible chitinolytic system of Aspergillus fumigatus . . Microbiology 144:, 1575–1581. [CrossRef] [PubMed]
    [Google Scholar]
  21. Felsenstein J. . ( 2005; ) phylip (Phylogeny Inference Package) version 3.6.. Distributed by the author. Department of Genome Sciences, University of Washington, Seattle, WA, USA.
  22. Gooday G. W. , Zhu W. Y. , O’Donnell R. W. . ( 1992; ). What are the roles of chitinases in the growing fungus?. FEMS Microbiol Lett 100:, 387–391.[CrossRef]
    [Google Scholar]
  23. Gruber S. , Vaaje-Kolstad G. , Matarese F. , López-Mondéjar R. , Kubicek C. P. , Seidl-Seiboth V. . ( 2011; ). Analysis of subgroup C of fungal chitinases containing chitin-binding and LysM modules in the mycoparasite Trichoderma atroviride . . Glycobiology 21:, 122–133. [CrossRef] [PubMed]
    [Google Scholar]
  24. Haas H. , Angermayr K. , Zadra I. , Stöffler G. . ( 1997; ). Overexpression of nreB, a new GATA factor-encoding gene of Penicillium chrysogenum, leads to repression of the nitrate assimilatory gene cluster. . J Biol Chem 272:, 22576–22582. [CrossRef] [PubMed]
    [Google Scholar]
  25. Henrissat B. , Bairoch A. . ( 1993; ). New families in the classification of glycosyl hydrolases based on amino acid sequence similarities. . Biochem J 293:, 781–788.[PubMed]
    [Google Scholar]
  26. Hoff B. , Pöggeler S. , Kück U. . ( 2008; ). Eighty years after its discovery, Fleming’s Penicillium strain discloses the secret of its sex. . Eukaryot Cell 7:, 465–470. [CrossRef] [PubMed]
    [Google Scholar]
  27. Hoff B. , Kamerewerd J. , Sigl C. , Mitterbauer R. , Zadra I. , Kürnsteiner H. , Kück U. . ( 2010a; ). Two components of a velvet-like complex control hyphal morphogenesis, conidiophore development, and penicillin biosynthesis in Penicillium chrysogenum . . Eukaryot Cell 9:, 1236–1250. [CrossRef] [PubMed]
    [Google Scholar]
  28. Hoff B. , Kamerewerd J. , Sigl C. , Zadra I. , Kück U. . ( 2010b; ). Homologous recombination in the antibiotic producer Penicillium chrysogenum: strain ΔPcku70 shows up-regulation of genes from the HOG pathway. . Appl Microbiol Biotechnol 85:, 1081–1094. [CrossRef] [PubMed]
    [Google Scholar]
  29. Horton P. , Park K. J. , Obayashi T. , Fujita N. , Harada H. , Adams-Collier C. J. , Nakai K. . ( 2007; ). WoLF psort: protein localization predictor. . Nucleic Acids Res 35: (Web Server issue), W585–W587. [CrossRef] [PubMed]
    [Google Scholar]
  30. Jaques A. K. , Fukamizo T. , Hall D. , Barton R. C. , Escott G. M. , Parkinson T. , Hitchcock C. A. , Adams D. J. . ( 2003; ). Disruption of the gene encoding the ChiB1 chitinase of Aspergillus fumigatus and characterization of a recombinant gene product. . Microbiology 149:, 2931–2939. [CrossRef] [PubMed]
    [Google Scholar]
  31. Jerpseth B. , Greener A. , Short J. M. , Viola J. , Kretz P. L. . ( 1992; ). XL1-Blue MRF′ E. coli cells: McrA, McrCB, McrF, Mrr, HsdR derivative of XL1-Blue cells. . Strateg Mol Biol 5:, 81–83.
    [Google Scholar]
  32. Kubodera T. , Yamashita N. , Nishimura A. . ( 2000; ). Pyrithiamine resistance gene (ptrA) of Aspergillus oryzae: cloning, characterization and application as a dominant selectable marker for transformation. . Biosci Biotechnol Biochem 64:, 1416–1421. [CrossRef] [PubMed]
    [Google Scholar]
  33. Kuranda M. J. , Robbins P. W. . ( 1991; ). Chitinase is required for cell separation during growth of Saccharomyces cerevisiae . . J Biol Chem 266:, 19758–19767.[PubMed]
    [Google Scholar]
  34. Li S. , Myung K. , Guse D. , Donkin B. , Proctor R. H. , Grayburn W. S. , Calvo A. M. . ( 2006; ). FvVE1 regulates filamentous growth, the ratio of microconidia to macroconidia and cell wall formation in Fusarium verticillioides . . Mol Microbiol 62:, 1418–1432. [CrossRef] [PubMed]
    [Google Scholar]
  35. Li H. , Zhou H. , Luo Y. , Ouyang H. , Hu H. , Jin C. . ( 2007; ). Glycosylphosphatidylinositol (GPI) anchor is required in Aspergillus fumigatus for morphogenesis and virulence. . Mol Microbiol 64:, 1014–1027. [CrossRef] [PubMed]
    [Google Scholar]
  36. Lopes M. A. , Gomes D. S. , Koblitz M. G. , Pirovani C. P. , Cascardo J. C. , Góes-Neto A. , Micheli F. . ( 2008; ). Use of response surface methodology to examine chitinase regulation in the basidiomycete Moniliophthora perniciosa . . Mycol Res 112:, 399–406. [CrossRef] [PubMed]
    [Google Scholar]
  37. Mach R. L. , Peterbauer C. K. , Payer K. , Jaksits S. , Woo S. L. , Zeilinger S. , Kullnig C. M. , Lorito M. , Kubicek C. P. . ( 1999; ). Expression of two major chitinase genes of Trichoderma atroviride (T. harzianum P1) is triggered by different regulatory signals. . Appl Environ Microbiol 65:, 1858–1863.[PubMed]
    [Google Scholar]
  38. Maeda H. , Ishida N. . ( 1967; ). Specificity of binding of hexopyranosyl polysaccharides with fluorescent brightener. . J Biochem 62:, 276–278.[PubMed]
    [Google Scholar]
  39. Minuth W. , Tudzynski P. , Esser K. . ( 1982; ). Extrachromosomal genetics of Cephalosporium acremonium . . Curr Genet 5:, 227–231. [CrossRef]
    [Google Scholar]
  40. Mullaney E. J. , Hamer J. E. , Roberti K. A. , Yelton M. M. , Timberlake W. E. . ( 1985; ). Primary structure of the trpC gene from Aspergillus nidulans . . Mol Gen Genet 199:, 37–45. [CrossRef] [PubMed]
    [Google Scholar]
  41. Natarajan K. , Datta A. . ( 1993; ). Molecular cloning and analysis of the NAG1 cDNA coding for glucosamine-6-phosphate deaminase from Candida albicans . . J Biol Chem 268:, 9206–9214.[PubMed]
    [Google Scholar]
  42. Nicholas K. B. , Nicholas H. B. , Deerfield D. W. II . ( 1997; ). GeneDoc: analysis and visualization of genetic variation.. EMBNEW NEWS 4:, 14.
    [Google Scholar]
  43. Page R. D. . ( 1996; ). TreeView: an application to display phylogenetic trees on personal computers. . Comput Appl Biosci 12:, 357–358.[PubMed]
    [Google Scholar]
  44. Pearson C. L. , Xu K. , Sharpless K. E. , Harris S. D. . ( 2004; ). MesA, a novel fungal protein required for the stabilization of polarity axes in Aspergillus nidulans . . Mol Biol Cell 15:, 3658–3672. [CrossRef] [PubMed]
    [Google Scholar]
  45. Pedersen A. G. , Nielsen H. . ( 1997; ). Neural network prediction of translation initiation sites in eukaryotes: perspectives for EST and genome analysis. . Proc Int Conf Intell Syst Mol Biol 5:, 226–233.[PubMed]
    [Google Scholar]
  46. Perlman D. , Halvorson H. O. . ( 1983; ). A putative signal peptidase recognition site and sequence in eukaryotic and prokaryotic signal peptides. . J Mol Biol 167:, 391–409. [CrossRef] [PubMed]
    [Google Scholar]
  47. Perrin R. M. , Fedorova N. D. , Bok J. W. , Cramer R. A. , Wortman J. R. , Kim H. S. , Nierman W. C. , Keller N. P. . ( 2007; ). Transcriptional regulation of chemical diversity in Aspergillus fumigatus by LaeA. . PLoS Pathog 3:, e50. [CrossRef] [PubMed]
    [Google Scholar]
  48. Pócsi I. , Leiter E. , Kwon N. J. , Shin K. S. , Kwon G. S. , Pusztahelyi T. , Emri T. , Abuknesha R. A. , Price R. G. , Yu J. H. . ( 2009; ). Asexual sporulation signalling regulates autolysis of Aspergillus nidulans via modulating the chitinase ChiB production. . J Appl Microbiol 107:, 514–523. [CrossRef] [PubMed]
    [Google Scholar]
  49. Punt P. J. , Dingemanse M. A. , Kuyvenhoven A. , Soede R. D. , Pouwels P. H. , van den Hondel C. A. . ( 1990; ). Functional elements in the promoter region of the Aspergillus nidulans gpdA gene encoding glyceraldehyde-3-phosphate dehydrogenase. . Gene 93:, 101–109. [CrossRef] [PubMed]
    [Google Scholar]
  50. Pusztahelyi T. , Molnár Z. , Emri T. , Klement É. , Miskei M. , Kerékgyárto J. , Balla J. , Pócsi I. . ( 2006; ). Comparative studies of differential expression of chitinolytic enzymes encoded by chiA, chiB, chiC and nagA genes in Aspergillus nidulans . . Folia Microbiol (Praha) 51:, 547–554. [CrossRef] [PubMed]
    [Google Scholar]
  51. Rast D. M. , Horsch M. , Furter R. , Gooday G. W. . ( 1991; ). A complex chitinolytic system in exponentially growing mycelium of Mucor rouxii: properties and function. . J Gen Microbiol 137:, 2797–2810.[PubMed] [CrossRef]
    [Google Scholar]
  52. Ruijter J. M. , Ramakers C. , Hoogaars W. M. , Karlen Y. , Bakker O. , van den Hoff M. J. , Moorman A. F. . ( 2009; ). Amplification efficiency: linking baseline and bias in the analysis of quantitative PCR data. . Nucleic Acids Res 37:, e45. [CrossRef] [PubMed]
    [Google Scholar]
  53. Sahai A. S. , Manocha M. S. . ( 1993; ). Chitinases of fungi and plants: their involvement in morphogenesis and host-parasite interaction. . FEMS Microbiol Rev 11:, 317–338. [CrossRef]
    [Google Scholar]
  54. Sambrook J. , Russell D. W. . ( 2001; ). Molecular Cloning: a Laboratory Manual, , 3rd edn.. Cold Spring Harbor, NY:: Cold Spring Harbor Laboratory;.
    [Google Scholar]
  55. Sarikaya Bayram Ö. , Bayram Ö. , Valerius O. , Park H. S. , Irniger S. , Gerke J. , Ni M. , Han K. H. , Yu J. H. , Braus G. H. . ( 2010; ). LaeA control of velvet family regulatory proteins for light-dependent development and fungal cell-type specificity. . PLoS Genet 6:, e1001226. [CrossRef] [PubMed]
    [Google Scholar]
  56. Seidl V. . ( 2008; ). Chitinases of filamentous fungi: a large group of diverse proteins with multiple physiological functions. . Fungal Biol Rev 22:, 36–42. [CrossRef]
    [Google Scholar]
  57. Seidl V. , Huemer B. , Seiboth B. , Kubicek C. P. . ( 2005; ). A complete survey of Trichoderma chitinases reveals three distinct subgroups of family 18 chitinases. . FEBS J 272:, 5923–5939. [CrossRef] [PubMed]
    [Google Scholar]
  58. Shin K. S. , Kwon N. J. , Kim Y. H. , Park H. S. , Kwon G. S. , Yu J. H. . ( 2009; ). Differential roles of the ChiB chitinase in autolysis and cell death of Aspergillus nidulans . . Eukaryot Cell 8:, 738–746. [CrossRef] [PubMed]
    [Google Scholar]
  59. Takeshita N. , Higashitsuji Y. , Konzack S. , Fischer R. . ( 2008; ). Apical sterol-rich membranes are essential for localizing cell end markers that determine growth directionality in the filamentous fungus Aspergillus nidulans . . Mol Biol Cell 19:, 339–351. [CrossRef] [PubMed]
    [Google Scholar]
  60. Thompson J. D. , Gibson T. J. , Plewniak F. , Jeanmougin F. , Higgins D. G. . ( 1997; ). The clustal_x windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. . Nucleic Acids Res 25:, 4876–4882. [CrossRef] [PubMed]
    [Google Scholar]
  61. van den Berg M. A. , Albang R. , Albermann K. , Badger J. H. , Daran J. M. , Driessen A. J. , Garcia-Estrada C. , Fedorova N. D. , Harris D. M. et al. & other authors ( 2008; ). Genome sequencing and analysis of the filamentous fungus Penicillium chrysogenum . . Nat Biotechnol 26:, 1161–1168. [CrossRef] [PubMed]
    [Google Scholar]
  62. von Heijne G. . ( 1986; ). A new method for predicting signal sequence cleavage sites. . Nucleic Acids Res 14:, 4683–4690. [CrossRef] [PubMed]
    [Google Scholar]
  63. Wendland J. , Schaub Y. , Walther A. . ( 2009; ). N-Acetylglucosamine utilization by Saccharomyces cerevisiae based on expression of Candida albicans NAG genes. . Appl Environ Microbiol 75:, 5840–5845. [CrossRef] [PubMed]
    [Google Scholar]
  64. Wiemann P. , Brown D. W. , Kleigrewe K. , Bok J. W. , Keller N. P. , Humpf H. U. , Tudzynski B. . ( 2010; ). FfVel1 and FfLae1, components of a velvet-like complex in Fusarium fujikuroi, affect differentiation, secondary metabolism and virulence. . Mol Microbiol 77:, 972–994.[PubMed]
    [Google Scholar]
  65. Wirth S. J. , Wolf G. A. . ( 1990; ). Dye-labelled substrates for the assay and detection of chitinase and lysozyme activity. . J Microbiol Methods 12:, 197–205. [CrossRef]
    [Google Scholar]
  66. Yamada-Okabe T. , Sakamori Y. , Mio T. , Yamada-Okabe H. . ( 2001; ). Identification and characterization of the genes for N-acetylglucosamine kinase and N-acetylglucosamine-phosphate deacetylase in the pathogenic fungus Candida albicans . . Eur J Biochem 268:, 2498–2505. [CrossRef] [PubMed]
    [Google Scholar]
  67. Yamazaki H. , Yamazaki D. , Takaya N. , Takagi M. , Ohta A. , Horiuchi H. . ( 2007; ). A chitinase gene, chiB, involved in the autolytic process of Aspergillus nidulans . . Curr Genet 51:, 89–98. [CrossRef] [PubMed]
    [Google Scholar]
  68. Zdobnov E. M. , Apweiler R. . ( 2001; ). InterProScan – an integration platform for the signature-recognition methods in InterPro. . Bioinformatics 17:, 847–848. [CrossRef] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.051896-0
Loading
/content/journal/micro/10.1099/mic.0.051896-0
Loading

Data & Media loading...

Supplements

Supplementary tables 

PDF

Supplementary Figs S1 - S7 legends 

PDF

Supplementary Figs S1 - S7 

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error