1887

Abstract

Penicillin production in is controlled by PcVelA and PcLaeA, two components of the regulatory -like complex. Comparative microarray analysis with mutants lacking PcVelA or PcLaeA revealed a set of 62 common genes affected by the loss of both components. A downregulated gene in both knockout strains is , potentially encoding a class V chitinase. Under nutrient-depleted conditions, transcript levels of are strongly upregulated, and the gene product contributes to more than 50 % of extracellular chitinase activity. Functional characterization by generating -disruption strains revealed that PcChiB1 is responsible for cell wall integrity and pellet formation in Further, fluorescence microscopy with a DsRed-labelled chitinase suggests a cell wall association of the protein. An unexpected phenotype occurred when knockout strains were grown on media containing -acetylglucosamine as the sole C and N source, where, in contrast to the recipient, a penicillin producer strain, the mutants and an ancestral strain show distinct mycelial growth. We discuss the relevance of this class V chitinase for morphology in an industrially important fungus.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.051896-0
2011-11-01
2020-10-23
Loading full text...

Full text loading...

/deliver/fulltext/micro/157/11/3036.html?itemId=/content/journal/micro/10.1099/mic.0.051896-0&mimeType=html&fmt=ahah

References

  1. Adams D. J.. ( 2004;). Fungal cell wall chitinases and glucanases. Microbiology150:2029–2035 [CrossRef][PubMed]
    [Google Scholar]
  2. Arst H. N. Jr, Cove D. J.. ( 1973;). Nitrogen metabolite repression in Aspergillus nidulans . Mol Gen Genet126:111–141 [CrossRef][PubMed]
    [Google Scholar]
  3. Backus M. P., Stauffer J. F., Johnson M. J.. ( 1946;). Penicillin yields from new mold strains. J Am Chem Soc68:152–153 [CrossRef][PubMed]
    [Google Scholar]
  4. Bartnicki-Garcia S.. ( 1973;). Fundamental aspects of hyphal morphogenesis. Microbial Differentiation245–267 Asworth J. M., Smith J. E.. London: Cambridge University Press;
    [Google Scholar]
  5. Bayram Ö., Krappmann S., Ni M., Bok J. W., Helmstaedt K., Valerius O., Braus-Stromeyer S., Kwon N. J., Keller N. P. et al. & other authors ( 2008a;). VelB/VeA/LaeA complex coordinates light signal with fungal development and secondary metabolism. Science320:1504–1506 [CrossRef][PubMed]
    [Google Scholar]
  6. Bayram Ö., Krappmann S., Seiler S., Vogt N., Braus G. H.. ( 2008b;). Neurospora crassa ve-1 affects asexual conidiation. Fungal Genet Biol45:127–138 [CrossRef][PubMed]
    [Google Scholar]
  7. Bendtsen J. D., Nielsen H., von Heijne G., Brunak S.. ( 2004;). Improved prediction of signal peptides: SignalP 3.0. J Mol Biol340:783–795 [CrossRef][PubMed]
    [Google Scholar]
  8. Bok J. W., Keller N. P.. ( 2004;). LaeA, a regulator of secondary metabolism in Aspergillus spp. Eukaryot Cell3:527–535 [CrossRef][PubMed]
    [Google Scholar]
  9. Bowman S. M., Piwowar A., Al Dabbous M., Vierula J., Free S. J.. ( 2006;). Mutational analysis of the glycosylphosphatidylinositol (GPI) anchor pathway demonstrates that GPI-anchored proteins are required for cell wall biogenesis and normal hyphal growth in Neurospora crassa . Eukaryot Cell5:587–600 [CrossRef][PubMed]
    [Google Scholar]
  10. Bradford M. M.. ( 1976;). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem72:248–254 [CrossRef][PubMed]
    [Google Scholar]
  11. Calvo A. M.. ( 2008;). The VeA regulatory system and its role in morphological and chemical development in fungi. Fungal Genet Biol45:1053–1061 [CrossRef][PubMed]
    [Google Scholar]
  12. Cantarel B. L., Coutinho P. M., Rancurel C., Bernard T., Lombard V., Henrissat B.. ( 2009;). The Carbohydrate-Active EnZymes database (CAZy): an expert resource for glycogenomics. Nucleic Acids Res37:Database issueD233–D238 [CrossRef][PubMed]
    [Google Scholar]
  13. Cary J. W., OBrian G. R., Nielsen D. M., Nierman W., Harris-Coward P., Yu J., Bhatnagar D., Cleveland T. E., Payne G. A., Calvo A. M.. ( 2007;). Elucidation of veA-dependent genes associated with aflatoxin and sclerotial production in Aspergillus flavus by functional genomics. Appl Microbiol Biotechnol76:1107–1118 [CrossRef][PubMed]
    [Google Scholar]
  14. Díez B., Rodríguez-Sáiz M., de la Fuente J. L., Moreno M. Á., Barredo J. L.. ( 2005;). The nagA gene of Penicillium chrysogenum encoding β-N-acetylglucosaminidase. FEMS Microbiol Lett242:257–264 [CrossRef][PubMed]
    [Google Scholar]
  15. Donzelli B. G., Harman G. E.. ( 2001;). Interaction of ammonium, glucose, and chitin regulates the expression of cell wall-degrading enzymes in Trichoderma atroviride strain P1. Appl Environ Microbiol67:5643–5647 [CrossRef][PubMed]
    [Google Scholar]
  16. Dowzer C. E., Kelly J. M.. ( 1989;). Cloning of the creA gene from Aspergillus nidulans: a gene involved in carbon catabolite repression. Curr Genet15:457–459 [CrossRef][PubMed]
    [Google Scholar]
  17. Dreyer J., Eichhorn H., Friedlin E., Kürnsteiner H., Kück U.. ( 2007;). A homologue of the Aspergillus velvet gene regulates both cephalosporin C biosynthesis and hyphal fragmentation in Acremonium chrysogenum . Appl Environ Microbiol73:3412–3422 [CrossRef][PubMed]
    [Google Scholar]
  18. Elander R.. ( 1983;). Strain improvement and preservation of beta-lactam producing microorganisms. Antibiotics Containing the Beta-Lactam Structure I97–146 Demain A. L., Solomon N.. Berlin, Heidelberg, New York: Springer-Verlag;
    [Google Scholar]
  19. Elorza M. V., Rico H., Sentandreu R.. ( 1983;). Calcofluor white alters the assembly of chitin fibrils in Saccharomyces cerevisiae and Candida albicans cells. J Gen Microbiol129:1577–1582[PubMed]
    [Google Scholar]
  20. Escott G. M., Hearn V. M., Adams D. J.. ( 1998;). Inducible chitinolytic system of Aspergillus fumigatus . Microbiology144:1575–1581 [CrossRef][PubMed]
    [Google Scholar]
  21. Felsenstein J.. ( 2005;) phylip (Phylogeny Inference Package) version 3.6..
  22. Gooday G. W., Zhu W. Y., O’Donnell R. W.. ( 1992;). What are the roles of chitinases in the growing fungus?. FEMS Microbiol Lett100:387–391[CrossRef]
    [Google Scholar]
  23. Gruber S., Vaaje-Kolstad G., Matarese F., López-Mondéjar R., Kubicek C. P., Seidl-Seiboth V.. ( 2011;). Analysis of subgroup C of fungal chitinases containing chitin-binding and LysM modules in the mycoparasite Trichoderma atroviride . Glycobiology21:122–133 [CrossRef][PubMed]
    [Google Scholar]
  24. Haas H., Angermayr K., Zadra I., Stöffler G.. ( 1997;). Overexpression of nreB, a new GATA factor-encoding gene of Penicillium chrysogenum, leads to repression of the nitrate assimilatory gene cluster. J Biol Chem272:22576–22582 [CrossRef][PubMed]
    [Google Scholar]
  25. Henrissat B., Bairoch A.. ( 1993;). New families in the classification of glycosyl hydrolases based on amino acid sequence similarities. Biochem J293:781–788[PubMed]
    [Google Scholar]
  26. Hoff B., Pöggeler S., Kück U.. ( 2008;). Eighty years after its discovery, Fleming’s Penicillium strain discloses the secret of its sex. Eukaryot Cell7:465–470 [CrossRef][PubMed]
    [Google Scholar]
  27. Hoff B., Kamerewerd J., Sigl C., Mitterbauer R., Zadra I., Kürnsteiner H., Kück U.. ( 2010a;). Two components of a velvet-like complex control hyphal morphogenesis, conidiophore development, and penicillin biosynthesis in Penicillium chrysogenum . Eukaryot Cell9:1236–1250 [CrossRef][PubMed]
    [Google Scholar]
  28. Hoff B., Kamerewerd J., Sigl C., Zadra I., Kück U.. ( 2010b;). Homologous recombination in the antibiotic producer Penicillium chrysogenum: strain ΔPcku70 shows up-regulation of genes from the HOG pathway. Appl Microbiol Biotechnol85:1081–1094 [CrossRef][PubMed]
    [Google Scholar]
  29. Horton P., Park K. J., Obayashi T., Fujita N., Harada H., Adams-Collier C. J., Nakai K.. ( 2007;). WoLF psort: protein localization predictor. Nucleic Acids Res35:Web Server issueW585–W587 [CrossRef][PubMed]
    [Google Scholar]
  30. Jaques A. K., Fukamizo T., Hall D., Barton R. C., Escott G. M., Parkinson T., Hitchcock C. A., Adams D. J.. ( 2003;). Disruption of the gene encoding the ChiB1 chitinase of Aspergillus fumigatus and characterization of a recombinant gene product. Microbiology149:2931–2939 [CrossRef][PubMed]
    [Google Scholar]
  31. Jerpseth B., Greener A., Short J. M., Viola J., Kretz P. L.. ( 1992;). XL1-Blue MRF′ E. coli cells: McrA, McrCB, McrF, Mrr, HsdR derivative of XL1-Blue cells. Strateg Mol Biol5:81–83
    [Google Scholar]
  32. Kubodera T., Yamashita N., Nishimura A.. ( 2000;). Pyrithiamine resistance gene (ptrA) of Aspergillus oryzae: cloning, characterization and application as a dominant selectable marker for transformation. Biosci Biotechnol Biochem64:1416–1421 [CrossRef][PubMed]
    [Google Scholar]
  33. Kuranda M. J., Robbins P. W.. ( 1991;). Chitinase is required for cell separation during growth of Saccharomyces cerevisiae . J Biol Chem266:19758–19767[PubMed]
    [Google Scholar]
  34. Li S., Myung K., Guse D., Donkin B., Proctor R. H., Grayburn W. S., Calvo A. M.. ( 2006;). FvVE1 regulates filamentous growth, the ratio of microconidia to macroconidia and cell wall formation in Fusarium verticillioides . Mol Microbiol62:1418–1432 [CrossRef][PubMed]
    [Google Scholar]
  35. Li H., Zhou H., Luo Y., Ouyang H., Hu H., Jin C.. ( 2007;). Glycosylphosphatidylinositol (GPI) anchor is required in Aspergillus fumigatus for morphogenesis and virulence. Mol Microbiol64:1014–1027 [CrossRef][PubMed]
    [Google Scholar]
  36. Lopes M. A., Gomes D. S., Koblitz M. G., Pirovani C. P., Cascardo J. C., Góes-Neto A., Micheli F.. ( 2008;). Use of response surface methodology to examine chitinase regulation in the basidiomycete Moniliophthora perniciosa . Mycol Res112:399–406 [CrossRef][PubMed]
    [Google Scholar]
  37. Mach R. L., Peterbauer C. K., Payer K., Jaksits S., Woo S. L., Zeilinger S., Kullnig C. M., Lorito M., Kubicek C. P.. ( 1999;). Expression of two major chitinase genes of Trichoderma atroviride (T. harzianum P1) is triggered by different regulatory signals. Appl Environ Microbiol65:1858–1863[PubMed]
    [Google Scholar]
  38. Maeda H., Ishida N.. ( 1967;). Specificity of binding of hexopyranosyl polysaccharides with fluorescent brightener. J Biochem62:276–278[PubMed]
    [Google Scholar]
  39. Minuth W., Tudzynski P., Esser K.. ( 1982;). Extrachromosomal genetics of Cephalosporium acremonium . Curr Genet5:227–231 [CrossRef]
    [Google Scholar]
  40. Mullaney E. J., Hamer J. E., Roberti K. A., Yelton M. M., Timberlake W. E.. ( 1985;). Primary structure of the trpC gene from Aspergillus nidulans . Mol Gen Genet199:37–45 [CrossRef][PubMed]
    [Google Scholar]
  41. Natarajan K., Datta A.. ( 1993;). Molecular cloning and analysis of the NAG1 cDNA coding for glucosamine-6-phosphate deaminase from Candida albicans . J Biol Chem268:9206–9214[PubMed]
    [Google Scholar]
  42. Nicholas K. B., Nicholas H. B., Deerfield D. W. II. ( 1997;). GeneDoc: analysis and visualization of genetic variation.. EMBNEW NEWS4:14
    [Google Scholar]
  43. Page R. D.. ( 1996;). TreeView: an application to display phylogenetic trees on personal computers. Comput Appl Biosci12:357–358[PubMed]
    [Google Scholar]
  44. Pearson C. L., Xu K., Sharpless K. E., Harris S. D.. ( 2004;). MesA, a novel fungal protein required for the stabilization of polarity axes in Aspergillus nidulans . Mol Biol Cell15:3658–3672 [CrossRef][PubMed]
    [Google Scholar]
  45. Pedersen A. G., Nielsen H.. ( 1997;). Neural network prediction of translation initiation sites in eukaryotes: perspectives for EST and genome analysis. Proc Int Conf Intell Syst Mol Biol5:226–233[PubMed]
    [Google Scholar]
  46. Perlman D., Halvorson H. O.. ( 1983;). A putative signal peptidase recognition site and sequence in eukaryotic and prokaryotic signal peptides. J Mol Biol167:391–409 [CrossRef][PubMed]
    [Google Scholar]
  47. Perrin R. M., Fedorova N. D., Bok J. W., Cramer R. A., Wortman J. R., Kim H. S., Nierman W. C., Keller N. P.. ( 2007;). Transcriptional regulation of chemical diversity in Aspergillus fumigatus by LaeA. PLoS Pathog3:e50 [CrossRef][PubMed]
    [Google Scholar]
  48. Pócsi I., Leiter E., Kwon N. J., Shin K. S., Kwon G. S., Pusztahelyi T., Emri T., Abuknesha R. A., Price R. G., Yu J. H.. ( 2009;). Asexual sporulation signalling regulates autolysis of Aspergillus nidulans via modulating the chitinase ChiB production. J Appl Microbiol107:514–523 [CrossRef][PubMed]
    [Google Scholar]
  49. Punt P. J., Dingemanse M. A., Kuyvenhoven A., Soede R. D., Pouwels P. H., van den Hondel C. A.. ( 1990;). Functional elements in the promoter region of the Aspergillus nidulans gpdA gene encoding glyceraldehyde-3-phosphate dehydrogenase. Gene93:101–109 [CrossRef][PubMed]
    [Google Scholar]
  50. Pusztahelyi T., Molnár Z., Emri T., Klement É., Miskei M., Kerékgyárto J., Balla J., Pócsi I.. ( 2006;). Comparative studies of differential expression of chitinolytic enzymes encoded by chiA, chiB, chiC and nagA genes in Aspergillus nidulans . Folia Microbiol (Praha)51:547–554 [CrossRef][PubMed]
    [Google Scholar]
  51. Rast D. M., Horsch M., Furter R., Gooday G. W.. ( 1991;). A complex chitinolytic system in exponentially growing mycelium of Mucor rouxii: properties and function. J Gen Microbiol137:2797–2810[PubMed][CrossRef]
    [Google Scholar]
  52. Ruijter J. M., Ramakers C., Hoogaars W. M., Karlen Y., Bakker O., van den Hoff M. J., Moorman A. F.. ( 2009;). Amplification efficiency: linking baseline and bias in the analysis of quantitative PCR data. Nucleic Acids Res37:e45 [CrossRef][PubMed]
    [Google Scholar]
  53. Sahai A. S., Manocha M. S.. ( 1993;). Chitinases of fungi and plants: their involvement in morphogenesis and host-parasite interaction. FEMS Microbiol Rev11:317–338 [CrossRef]
    [Google Scholar]
  54. Sambrook J., Russell D. W.. ( 2001;). Molecular Cloning: a Laboratory Manual, 3rd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  55. Sarikaya Bayram Ö., Bayram Ö., Valerius O., Park H. S., Irniger S., Gerke J., Ni M., Han K. H., Yu J. H., Braus G. H.. ( 2010;). LaeA control of velvet family regulatory proteins for light-dependent development and fungal cell-type specificity. PLoS Genet6:e1001226 [CrossRef][PubMed]
    [Google Scholar]
  56. Seidl V.. ( 2008;). Chitinases of filamentous fungi: a large group of diverse proteins with multiple physiological functions. Fungal Biol Rev22:36–42 [CrossRef]
    [Google Scholar]
  57. Seidl V., Huemer B., Seiboth B., Kubicek C. P.. ( 2005;). A complete survey of Trichoderma chitinases reveals three distinct subgroups of family 18 chitinases. FEBS J272:5923–5939 [CrossRef][PubMed]
    [Google Scholar]
  58. Shin K. S., Kwon N. J., Kim Y. H., Park H. S., Kwon G. S., Yu J. H.. ( 2009;). Differential roles of the ChiB chitinase in autolysis and cell death of Aspergillus nidulans . Eukaryot Cell8:738–746 [CrossRef][PubMed]
    [Google Scholar]
  59. Takeshita N., Higashitsuji Y., Konzack S., Fischer R.. ( 2008;). Apical sterol-rich membranes are essential for localizing cell end markers that determine growth directionality in the filamentous fungus Aspergillus nidulans . Mol Biol Cell19:339–351 [CrossRef][PubMed]
    [Google Scholar]
  60. Thompson J. D., Gibson T. J., Plewniak F., Jeanmougin F., Higgins D. G.. ( 1997;). The clustal_x windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res25:4876–4882 [CrossRef][PubMed]
    [Google Scholar]
  61. van den Berg M. A., Albang R., Albermann K., Badger J. H., Daran J. M., Driessen A. J., Garcia-Estrada C., Fedorova N. D., Harris D. M. et al. & other authors ( 2008;). Genome sequencing and analysis of the filamentous fungus Penicillium chrysogenum . Nat Biotechnol26:1161–1168 [CrossRef][PubMed]
    [Google Scholar]
  62. von Heijne G.. ( 1986;). A new method for predicting signal sequence cleavage sites. Nucleic Acids Res14:4683–4690 [CrossRef][PubMed]
    [Google Scholar]
  63. Wendland J., Schaub Y., Walther A.. ( 2009;). N-Acetylglucosamine utilization by Saccharomyces cerevisiae based on expression of Candida albicans NAG genes. Appl Environ Microbiol75:5840–5845 [CrossRef][PubMed]
    [Google Scholar]
  64. Wiemann P., Brown D. W., Kleigrewe K., Bok J. W., Keller N. P., Humpf H. U., Tudzynski B.. ( 2010;). FfVel1 and FfLae1, components of a velvet-like complex in Fusarium fujikuroi, affect differentiation, secondary metabolism and virulence. Mol Microbiol77:972–994[PubMed]
    [Google Scholar]
  65. Wirth S. J., Wolf G. A.. ( 1990;). Dye-labelled substrates for the assay and detection of chitinase and lysozyme activity. J Microbiol Methods12:197–205 [CrossRef]
    [Google Scholar]
  66. Yamada-Okabe T., Sakamori Y., Mio T., Yamada-Okabe H.. ( 2001;). Identification and characterization of the genes for N-acetylglucosamine kinase and N-acetylglucosamine-phosphate deacetylase in the pathogenic fungus Candida albicans . Eur J Biochem268:2498–2505 [CrossRef][PubMed]
    [Google Scholar]
  67. Yamazaki H., Yamazaki D., Takaya N., Takagi M., Ohta A., Horiuchi H.. ( 2007;). A chitinase gene, chiB, involved in the autolytic process of Aspergillus nidulans . Curr Genet51:89–98 [CrossRef][PubMed]
    [Google Scholar]
  68. Zdobnov E. M., Apweiler R.. ( 2001;). InterProScan – an integration platform for the signature-recognition methods in InterPro. Bioinformatics17:847–848 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.051896-0
Loading
/content/journal/micro/10.1099/mic.0.051896-0
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error