1887

Abstract

In trace amounts, copper is essential for the function of key enzymes in prokaryotes and eukaryotes. Organisms have developed sophisticated mechanisms to control the cytosolic level of the metal, manage its toxicity and survive in copper-rich environments. Here we show that the CopR represents a novel class of copper-responsive regulators, unique to the archaeal domain. Furthermore, by disruption of the ORF Sso2652 () of the genome, we demonstrate that the gene encodes a transcriptional activator of the copper-transporting ATPase CopA gene and co-transcribed , encoding a putative copper-binding protein. Disruption resulted in a loss of copper tolerance in two -knockout mutants, while metals such as zinc, cadmium and chromium did not affect their growth. Copper sensitivity in the mutant was linked to insufficient levels of expression of CopA and CopT. The findings were further supported by time-course inductively coupled plasma optical emission spectrometry measurements, whereby continued accumulation of copper in the mutant was observed. In contrast, copper accumulation in the wild-type stabilized after reaching approximately 6 pg (µg total protein). Complementation of the disrupted mutant with a wild-type copy of the gene restored the wild-type phenotype with respect to the physiological and transcriptional response to copper. These observations, taken together, lead us to propose that CopR is an activator of and transcription, and the member of a novel class of copper-responsive regulators.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.051862-0
2011-10-01
2019-12-11
Loading full text...

Full text loading...

/deliver/fulltext/micro/157/10/2808.html?itemId=/content/journal/micro/10.1099/mic.0.051862-0&mimeType=html&fmt=ahah

References

  1. Aravind L., Koonin E. V.. ( 1999;). DNA-binding proteins and evolution of transcription regulation in the archaea. . Nucleic Acids Res 27:, 4658–4670. [CrossRef][PubMed]
    [Google Scholar]
  2. Baker-Austin C., Dopson M., Wexler M., Sawers R. G., Bond P. L.. ( 2005;). Molecular insight into extreme copper resistance in the extremophilic archaeon ‘Ferroplasma acidarmanus’ Fer1. . Microbiology 151:, 2637–2646. [CrossRef][PubMed]
    [Google Scholar]
  3. Berkner S., Grogan D., Albers S. V., Lipps G.. ( 2007;). Small multicopy, non-integrative shuttle vectors based on the plasmid pRN1 for Sulfolobus acidocaldarius and Sulfolobus solfataricus, model organisms of the (cren-)archaea. . Nucleic Acids Res 35:, e88. [CrossRef][PubMed]
    [Google Scholar]
  4. Bini E.. ( 2008;). Archaea-metal interactions: metabolism and strategies of resistance. . In Archaea: New Models for Prokaryotic Biology, pp. 27–43. Edited by Blum P... Norwich:: Caister Academic Press;.
    [Google Scholar]
  5. Brown N. L., Barrett S. R., Camakaris J., Lee B. T., Rouch D. A.. ( 1995;). Molecular genetics and transport analysis of the copper-resistance determinant (pco) from Escherichia coli plasmid pRJ1004. . Mol Microbiol 17:, 1153–1166. [CrossRef][PubMed]
    [Google Scholar]
  6. Cantini F., Banci L., Solioz M.. ( 2009;). The copper-responsive repressor CopR of Lactococcus lactis is a ‘winged helix’ protein. . Biochem J 417:, 493–499. [CrossRef][PubMed]
    [Google Scholar]
  7. Chillappagari S., Seubert A., Trip H., Kuipers O. P., Marahiel M. A., Miethke M.. ( 2010;). Copper stress affects iron homeostasis by destabilizing iron-sulfur cluster formation in Bacillus subtilis. . J Bacteriol 192:, 2512–2524. [CrossRef][PubMed]
    [Google Scholar]
  8. Ettema T. J., Huynen M. A., de Vos W. M., van der Oost J.. ( 2003;). TRASH: a novel metal-binding domain predicted to be involved in heavy-metal sensing, trafficking and resistance. . Trends Biochem Sci 28:, 170–173. [CrossRef][PubMed]
    [Google Scholar]
  9. Ettema T. J., Brinkman A. B., Lamers P. P., Kornet N. G., de Vos W. M., van der Oost J.. ( 2006;). Molecular characterization of a conserved archaeal copper resistance (cop) gene cluster and its copper-responsive regulator in Sulfolobus solfataricus P2. . Microbiology 152:, 1969–1979. [CrossRef][PubMed]
    [Google Scholar]
  10. Felsenstein J.. ( 2004;). phylip - Phylogeny Inference Package (Version 3.2). . Cladistics 5:, 164–166.
    [Google Scholar]
  11. Gaballa A., Cao M., Helmann J. D.. ( 2003;). Two MerR homologues that affect copper induction of the Bacillus subtilis copZA operon. . Microbiology 149:, 3413–3421. [CrossRef][PubMed]
    [Google Scholar]
  12. Geiduschek E. P., Ouhammouch M.. ( 2005;). Archaeal transcription and its regulators. . Mol Microbiol 56:, 1397–1407. [CrossRef][PubMed]
    [Google Scholar]
  13. González-Guerrero M., Argüello J. M.. ( 2008;). Mechanism of Cu+-transporting ATPases: soluble Cu+ chaperones directly transfer Cu+ to transmembrane transport sites. . Proc Natl Acad Sci U S A 105:, 5992–5997. [CrossRef][PubMed]
    [Google Scholar]
  14. Haseltine C., Montalvo-Rodriguez R., Carl A., Bini E., Blum P.. ( 1999;). Extragenic pleiotropic mutations that repress glycosyl hydrolase expression in the hyperthermophilic archaeon Sulfolobus solfataricus. . Genetics 152:, 1353–1361.[PubMed]
    [Google Scholar]
  15. Hasman H.. ( 2005;). The tcrB gene is part of the tcrYAZB operon conferring copper resistance in Enterococcus faecium and Enterococcus faecalis. . Microbiology 151:, 3019–3025. [CrossRef][PubMed]
    [Google Scholar]
  16. Julian D. J., Kershaw C. J., Brown N. L., Hobman J. L.. ( 2009;). Transcriptional activation of MerR family promoters in Cupriavidus metallidurans CH34. . Antonie van Leeuwenhoek 96:, 149–159. [CrossRef][PubMed]
    [Google Scholar]
  17. Liu T., Ramesh A., Ma Z., Ward S. K., Zhang L., George G. N., Talaat A. M., Sacchettini J. C., Giedroc D. P.. ( 2007;). CsoR is a novel Mycobacterium tuberculosis copper-sensing transcriptional regulator. . Nat Chem Biol 3:, 60–68. [CrossRef][PubMed]
    [Google Scholar]
  18. Livak K. J., Schmittgen T. D.. ( 2001;). Analysis of relative gene expression data using real-time quantitative PCR and the . method. . Methods 25:, 402–408. [CrossRef][PubMed]
    [Google Scholar]
  19. Ma Z., Cowart D. M., Scott R. A., Giedroc D. P.. ( 2009;). Molecular insights into the metal selectivity of the copper(I)-sensing repressor CsoR from Bacillus subtilis. . Biochemistry 48:, 3325–3334. [CrossRef][PubMed]
    [Google Scholar]
  20. Macomber L., Imlay J. A.. ( 2009;). The iron-sulfur clusters of dehydratases are primary intracellular targets of copper toxicity. . Proc Natl Acad Sci U S A 106:, 8344–8349. [CrossRef][PubMed]
    [Google Scholar]
  21. Macomber L., Rensing C., Imlay J. A.. ( 2007;). Intracellular copper does not catalyze the formation of oxidative DNA damage in Escherichia coli. . J Bacteriol 189:, 1616–1626. [CrossRef][PubMed]
    [Google Scholar]
  22. Maezato Y., Daugherty A., Dana K., Soo E., Cooper C., Tachdjian S., Kelly R. M., Blum P.. ( 2011;). VapC6, a ribonucleolytic toxin regulates thermophilicity in the crenarchaeote Sulfolobus solfataricus. . RNA 17:, 1381–1392. [CrossRef][PubMed]
    [Google Scholar]
  23. Magnani D., Barré O., Gerber S. D., Solioz M.. ( 2008;). Characterization of the CopR regulon of Lactococcus lactis IL1403. . J Bacteriol 190:, 536–545. [CrossRef][PubMed]
    [Google Scholar]
  24. Mills S. D., Jasalavich C. A., Cooksey D. A.. ( 1993;). A two-component regulatory system required for copper-inducible expression of the copper resistance operon of Pseudomonas syringae. . J Bacteriol 175:, 1656–1664.[PubMed]
    [Google Scholar]
  25. Munson G. P., Lam D. L., Outten F. W., O’Halloran T. V.. ( 2000;). Identification of a copper-responsive two-component system on the chromosome of Escherichia coli K-12. . J Bacteriol 182:, 5864–5871. [CrossRef][PubMed]
    [Google Scholar]
  26. Outten F. W., Outten C. E., Hale J., O’Halloran T. V.. ( 2000;). Transcriptional activation of an Escherichia coli copper efflux regulon by the chromosomal MerR homologue, cueR. . J Biol Chem 275:, 31024–31029. [CrossRef][PubMed]
    [Google Scholar]
  27. Portmann R., Magnani D., Stoyanov J. V., Schmechel A., Multhaup G., Solioz M.. ( 2004;). Interaction kinetics of the copper-responsive CopY repressor with the cop promoter of Enterococcus hirae. . J Biol Inorg Chem 9:, 396–402. [CrossRef][PubMed]
    [Google Scholar]
  28. Reeve W. G., Tiwari R. P., Kale N. B., Dilworth M. J., Glenn A. R.. ( 2002;). ActP controls copper homeostasis in Rhizobium leguminosarum bv. viciae and Sinorhizobium meliloti preventing low pH-induced copper toxicity. . Mol Microbiol 43:, 981–991. [CrossRef][PubMed]
    [Google Scholar]
  29. Remonsellez F., Orell A., Jerez C. A.. ( 2006;). Copper tolerance of the thermoacidophilic archaeon Sulfolobus metallicus: possible role of polyphosphate metabolism. . Microbiology 152:, 59–66. [CrossRef][PubMed]
    [Google Scholar]
  30. Rensing C., Grass G.. ( 2003;). Escherichia coli mechanisms of copper homeostasis in a changing environment. . FEMS Microbiol Rev 27:, 197–213. [CrossRef][PubMed]
    [Google Scholar]
  31. Rosen B. P.. ( 2002;). Transport and detoxification systems for transition metals, heavy metals and metalloids in eukaryotic and prokaryotic microbes. . Comp Biochem Physiol A Mol Integr Physiol 133:, 689–693. [CrossRef][PubMed]
    [Google Scholar]
  32. Rouch D. A., Brown N. L.. ( 1997;). Copper-inducible transcriptional regulation at two promoters in the Escherichia coli copper resistance determinant pco. . Microbiology 143:, 1191–1202. [CrossRef][PubMed]
    [Google Scholar]
  33. Sambrook J., Fritsch E. F., Maniatis T.. ( 1989;). Molecular Cloning: a Laboratory Manual. Cold Spring Harbor, NY:: Cold Spring Harbor Laboratory;.
    [Google Scholar]
  34. Solioz M., Stoyanov J. V.. ( 2003;). Copper homeostasis in Enterococcus hirae. . FEMS Microbiol Rev 27:, 183–195. [CrossRef][PubMed]
    [Google Scholar]
  35. Stoyanov J. V., Hobman J. L., Brown N. L.. ( 2001;). CueR (YbbI) of Escherichia coli is a MerR family regulator controlling expression of the copper exporter CopA. . Mol Microbiol 39:, 502–512. [CrossRef][PubMed]
    [Google Scholar]
  36. Tapiero H., Townsend D. M., Tew K. D.. ( 2003;). Trace elements in human physiology and pathology. Copper. . Biomed Pharmacother 57:, 386–398. [CrossRef][PubMed]
    [Google Scholar]
  37. Thaden J. T., Lory S., Gardner T. S.. ( 2010;). Quorum-sensing regulation of a copper toxicity system in Pseudomonas aeruginosa. . J Bacteriol 192:, 2557–2568. [CrossRef][PubMed]
    [Google Scholar]
  38. Valko M., Morris H., Cronin M. T.. ( 2005;). Metals, toxicity and oxidative stress. . Curr Med Chem 12:, 1161–1208. [CrossRef][PubMed]
    [Google Scholar]
  39. Villafane A. A., Voskoboynik Y., Cuebas M., Ruhl I., Bini E.. ( 2009;). Response to excess copper in the hyperthermophile Sulfolobus solfataricus strain 98/2. . Biochem Biophys Res Commun 385:, 67–71. [CrossRef][PubMed]
    [Google Scholar]
  40. Worthington P., Hoang V., Perez-Pomares F., Blum P.. ( 2003;). Targeted disruption of the alpha-amylase gene in the hyperthermophilic archaeon Sulfolobus solfataricus. . J Bacteriol 185:, 482–488. [CrossRef][PubMed]
    [Google Scholar]
  41. Wurtzel O., Sapra R., Chen F., Zhu Y., Simmons B. A., Sorek R.. ( 2010;). A single-base resolution map of an archaeal transcriptome. . Genome Res 20:, 133–141. [CrossRef][PubMed]
    [Google Scholar]
  42. Zhang Y., Gladyshev V. N.. ( 2010;). General trends in trace element utilization revealed by comparative genomic analyses of Co, Cu, Mo, Ni, and Se. . J Biol Chem 285:, 3393–3405. [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.051862-0
Loading
/content/journal/micro/10.1099/mic.0.051862-0
Loading

Data & Media loading...

Supplements

[PDF](134 KB)

PDF

[PDF](200 KB)

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error