1887

Abstract

species are ubiquitous soil fungi that hold enormous potential for the development of credible alternatives to agrochemicals and synthetic fertilizers in sustainable crop production. In this paper, we show that substantial improvements in plant productivity can be met by genetic modification of a plant-growth-promoting and biocontrol strain of , but that these improvements are obtained in the absence of disease pressure only. Using a quantitative monoclonal antibody-based ELISA, we show that an -acetyl-β--glucosaminidase-deficient mutant of , generated by insertional mutagenesis of the corresponding gene, has impaired saprotrophic competitiveness during antagonistic interactions with in soil. Furthermore, its fitness as a biocontrol agent of the pre-emergence damping-off pathogen is significantly reduced, and its ability to promote plant growth is constrained by the presence of both pathogens. This work shows that while gains in . -mediated plant-growth-promotion can be met through genetic manipulation of a single beneficial trait, such a modification has negative impacts on other aspects of its biology and ecology that contribute to its success as a saprotrophic competitor and antagonist of soil-borne pathogens. The work has important implications for fungal morphogenesis, demonstrating a clear link between hyphal architecture and secretory potential. Furthermore, it highlights the need for a holistic approach to the development of genetically modified strains for use as crop stimulants and biocontrol agents in plant agriculture.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.051854-0
2012-01-01
2020-08-04
Loading full text...

Full text loading...

/deliver/fulltext/micro/158/1/84.html?itemId=/content/journal/micro/10.1099/mic.0.051854-0&mimeType=html&fmt=ahah

References

  1. Altomare C., Norvell W. A., Björkman T., Harman G. E.. ( 1999;). Solubilization of phosphates and micronutrients by the plant-growth-promoting and biocontrol fungus Trichoderma harzianum Rifai 1295-22. Appl Environ Microbiol65:2926–2933[PubMed]
    [Google Scholar]
  2. Bae H., Sicher R. C., Kim M. S., Kim S.-H., Strem M. D., Melnick R. L., Bailey B. A.. ( 2009;). The beneficial endophyte Trichoderma hamatum isolate DIS 219b promotes growth and delays the onset of the drought response in Theobroma cacao. . J Exp Bot60:3279–3295 [CrossRef][PubMed]
    [Google Scholar]
  3. Baek J.-M., Howell C. R., Kenerley C. M.. ( 1999;). The role of an extracellular chitinase from Trichoderma virens Gv29-8 in the biocontrol of Rhizoctonia solani. . Curr Genet35:41–50 [CrossRef][PubMed]
    [Google Scholar]
  4. Borgia P. T., Iartchouk N., Riggle P. J., Winter K. R., Koltin Y., Bulawa C. E.. ( 1996;). The chsB gene of Aspergillus nidulans is necessary for normal hyphal growth and development. Fungal Genet Biol20:193–203 [CrossRef][PubMed]
    [Google Scholar]
  5. Brunner K., Peterbauer C. K., Mach R. L., Lorito M., Zeilinger S., Kubicek C. P.. ( 2003;). The Nag1 N-acetylglucosaminidase of Trichoderma atroviride is essential for chitinase induction by chitin and of major relevance to biocontrol. Curr Genet43:289–295 [CrossRef][PubMed]
    [Google Scholar]
  6. Chang Y.-C., Baker R., Kleifeld O., Chet I.. ( 1986;). Increased growth of plants in the presence of the biological control agent Trichoderma harzianum. . Plant Dis70:145–148 [CrossRef]
    [Google Scholar]
  7. Chet I., Baker R.. ( 1981;). Isolation and biocontrol potential of Trichoderma hamatum from soil naturally suppressive to Rhizoctonia solani. . Phytopathology71:286–290 [CrossRef]
    [Google Scholar]
  8. Chet I., Harman G. E., Baker R.. ( 1981;). Trichoderma hamatum: Its hyphal interaction with Rhizoctonia solani and Pythium spp. Microb Ecol7:29–38 [CrossRef]
    [Google Scholar]
  9. Contreras-Cornejo H. A., Macías-Rodríguez L., Cortés-Penagos C., López-Bucio J.. ( 2009;). Trichoderma virens, a plant beneficial fungus, enhances biomass production and promotes lateral root growth through an auxin-dependent mechanism in Arabidopsis. Plant Physiol149:1579–1592 [CrossRef][PubMed]
    [Google Scholar]
  10. Djonović S., Vittone G., Mendoza-Herrera A., Kenerley C. M.. ( 2007;). Enhanced biocontrol activity of Trichoderma virens transformants constitutively coexpressing β-1,3- and β-1,6-glucanase genes. Mol Plant Pathol8:469–480 [CrossRef][PubMed]
    [Google Scholar]
  11. Duo-Chuan L.. ( 2006;). Review of fungal chitinases. Mycopathologia161:345–360 [CrossRef][PubMed]
    [Google Scholar]
  12. Elorza M. V., Rico H., Sentandreu R.. ( 1983;). Calcofluor white alters the assembly of chitin fibrils in Saccharomyces cerevisiae and Candida albicans cells. J Gen Microbiol129:1577–1582[PubMed]
    [Google Scholar]
  13. Flores A., Chet I., Herrera-Estrella A.. ( 1997;). Improved biocontrol activity of Trichoderma harzianum by over-expression of the proteinase-encoding gene prb1. . Curr Genet31:30–37 [CrossRef][PubMed]
    [Google Scholar]
  14. Fortwendel J. R., Juvvadi P. R., Perfect B. Z., Rogg L. E., Perfect J. R., Steinbach W. J.. ( 2010;). Transcriptional regulation of chitin synthases by calcineurin controls paradoxical growth of Aspergillus fumigatus in response to caspofungin. Antimicrob Agents Chemother54:1555–1563 [CrossRef][PubMed]
    [Google Scholar]
  15. Fuchs B. B., Mylonakis E.. ( 2009;). Our paths might cross: the role of the fungal cell wall integrity pathway in stress response and cross talk with other stress response pathways. Eukaryot Cell8:1616–1625 [CrossRef][PubMed]
    [Google Scholar]
  16. Garrett S. D.. ( 1970;). Pathogenic Root Infecting Fungi Cambridge: Cambridge University Press;
    [Google Scholar]
  17. Gordon C. L., Khalaj V., Ram A. F., Archer D. B., Brookman J. L., Trinci A. P. J., Jeenes D. J., Doonan J. H., Wells B.. & other authors ( 2000;). Glucoamylase:green fluorescent protein fusions to monitor protein secretion in Aspergillus niger. . Microbiology146:415–426[PubMed]
    [Google Scholar]
  18. Harman G. E., Howell C. R., Viterbo A., Chet I., Lorito M.. ( 2004;). Trichoderma species – opportunistic, avirulent plant symbionts. Nat Rev Microbiol2:43–56 [CrossRef][PubMed]
    [Google Scholar]
  19. Horiuchi H., Fujiwara M., Yamashita S., Ohta A., Takagi M.. ( 1999;). Proliferation of intrahyphal hyphae caused by disruption of csmA, which encodes a class V chitin synthase with a myosin motor-like domain in Aspergillus nidulans. . J Bacteriol181:3721–3729[PubMed]
    [Google Scholar]
  20. Horsch M., Mayer C., Sennhauser U., Rast D. M.. ( 1997;). β-N-acetylhexosaminidase: a target for the design of antifungal agents. Pharmacol Ther76:187–218 [CrossRef][PubMed]
    [Google Scholar]
  21. Kaminskyj S. G. W., Heath M. C.. ( 1982;). An evaluation of the nitrous acid – 3-methyl-2-benzothiazolinone hydrazone hydrochloride – ferric chloride assay for chitin in rust fungi and rust-infected tissue. Can J Bot60:2575–2580 [CrossRef]
    [Google Scholar]
  22. Kerley S. J., Read D. J.. ( 1995;). The biology of mycorrhiza in the Ericaceae. XV. Chitin degradation by Hymenoscyphus ericae and transfer of chitin-nitrogen to the host plant. New Phytol131:369–375 [CrossRef]
    [Google Scholar]
  23. Kerley S. J., Read D. J.. ( 1998;). The biology of mycorrhiza in the Ericaceae. XX. Plant and mycorrhizal necromass as nitrogenous substrates for the ericoid mycorrhizal fungus Hymenoscyphus ericae and its host. New Phytol139:353–360 [CrossRef]
    [Google Scholar]
  24. Kruszewska J. S., Butterweck A. H., Kurzatkowski W., Migdalski A., Kubicek C. P., Palamarczyk G.. ( 1999;). Overexpression of the Saccharomyces cerevisiae mannosylphosphodolichol synthase-encoding gene in Trichoderma reesei results in an increased level of protein secretion and abnormal cell ultrastructure. Appl Environ Microbiol65:2382–2387[PubMed]
    [Google Scholar]
  25. Leake J. R., Read D. J.. ( 1990;). Chitin as a nitrogen source for mycorrhizal fungi. Mycol Res94:993–995 [CrossRef]
    [Google Scholar]
  26. Lesage G., Sdicu A. M., Ménard P., Shapiro J., Hussein S., Bussey H.. ( 2004;). Analysis of beta-1,3-glucan assembly in Saccharomyces cerevisiae using a synthetic interaction network and altered sensitivity to caspofungin. Genetics167:35–49 [CrossRef][PubMed]
    [Google Scholar]
  27. Limón M. C., Pintor-Toro J. A., Benítez T.. ( 1999;). Increased antifungal activity of Trichoderma harzianum transformants that overexpress a 33-kDa chitinase. Phytopathology89:254–261 [CrossRef][PubMed]
    [Google Scholar]
  28. Lindahl B. D., Taylor A. F. S.. ( 2004;). Occurrence of N-acetyl hexosaminidase-encoding genes in ectomycorrhizal basidiomycetes. New Phytol164:193–199 [CrossRef]
    [Google Scholar]
  29. Lorito M.. ( 1998;). Chitinolytic enzymes and their genes. Trichoderma and Gliocladium: Enzymes, Biological Control and Commercial Applications73–99 Harman G. E., Kubicek C. P.. London, UK: Taylor and Francis Ltd;
    [Google Scholar]
  30. Malvárez G., Carbone I., Grünwald N. J., Subbarao K. V., Schafer M., Kohn L. M.. ( 2007;). New populations of Sclerotinia sclerotiorum from lettuce in California and peas and lentils in Washington. Phytopathology97:470–483 [CrossRef][PubMed]
    [Google Scholar]
  31. Müller C., Hjort C. M., Hansen K., Nielsen J.. ( 2002;). Altering the expression of two chitin synthase genes differentially affects the growth and morphology of Aspergillus oryzae. . Microbiology148:4025–4033[PubMed]
    [Google Scholar]
  32. Ortíz-Castro R., Contreras-Cornejo H. A., Macías-Rodríguez L., López-Bucio J.. ( 2009;). The role of microbial signals in plant growth and development. Plant Signal Behav4:701–712 [CrossRef][PubMed]
    [Google Scholar]
  33. Perlińska-Lenart U., Orlowski J., Laudy A. E., Zdebska E., Palamarczyk G., Kruszewska J. S.. ( 2006;). Glycoprotein hypersecretion alters the cell wall in Trichoderma reesei strains expressing the Saccharomyces cerevisiae dolichylphosphate mannose synthase gene. Appl Environ Microbiol72:7778–7784 [CrossRef][PubMed]
    [Google Scholar]
  34. Rast D. M., Horsch M., Furter R., Gooday G. W.. ( 1991;). A complex chitinolytic system in exponentially growing mycelium of Mucor rouxii: properties and function. J Gen Microbiol137:2797–2810[PubMed][CrossRef]
    [Google Scholar]
  35. Read D. J., Perez-Moreno J.. ( 2003;). Mycorrhizas and nutrient cycling in ecosystems – a journey towards relevance?. New Phytol157:475–492 [CrossRef]
    [Google Scholar]
  36. Reyes F., Calatayud J., Vazquez C., Martínez M. J.. ( 1989a;). Beta-N-acetylglucosaminidase from Aspergillus nidulans which degrades chitin oligomers during autolysis. FEMS Microbiol Lett53:83–87[PubMed]
    [Google Scholar]
  37. Reyes F., Calatayud J., Vazquez C., Martínez M. J.. ( 1989b;). β-N-acetylglucosaminidase from Aspergillus nidulans implicated in the autolysis of the cell wall. FEMS Microbiol Rev11:317–338
    [Google Scholar]
  38. Sahai A. S., Manocha M. S.. ( 1993;). Chitinases of fungi and plants: their involvement in morphogenesis and host-parasite interaction. FEMS Microbiol Rev11:317–338 [CrossRef]
    [Google Scholar]
  39. Sambrook J., Fritsch E. F., Maniatis T.. ( 1989;). Molecular Cloning: a Laboratory Manual, 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press;
    [Google Scholar]
  40. Sweigard J., Chumley F., Carroll A., Farrall L., Valent B.. ( 1997;). A series of vectors for fungal transformation. Fungal Genet Newsl44:52–53
    [Google Scholar]
  41. Thornton C. R.. ( 2004;). An immunological approach to quantifying the saprotrophic growth dynamics of Trichoderma species during antagonistic interactions with Rhizoctonia solani in a soil-less mix. Environ Microbiol6:323–334 [CrossRef][PubMed]
    [Google Scholar]
  42. Thornton C. R.. ( 2005;). Use of monoclonal antibodies to quantify the dynamics of α-galactosidase and endo-1,4-β-glucanase production by Trichoderma hamatum during saprotrophic growth and sporulation in peat. Environ Microbiol7:737–749 [CrossRef][PubMed]
    [Google Scholar]
  43. Thornton C. R.. ( 2008;). Tracking fungi in soil with monoclonal antibodies. Eur J Plant Pathol121:347–353 [CrossRef]
    [Google Scholar]
  44. Thornton C. R., Gilligan C. A.. ( 1999;). Quantification of the effect of the hyperparasite Trichoderma harzianum on the saprotrophic growth dynamics of Rhizoctonia solani in compost using a monoclonal antibody-based ELISA. Mycol Res103:443–448 [CrossRef]
    [Google Scholar]
  45. Thornton C. R., Jarvis B. C., Cooke R. C.. ( 1991;). A chitin assay for the enumeration of Plasmodiophora brassicae resting spores in clubroot tissue. Mycol Res95:879–882 [CrossRef]
    [Google Scholar]
  46. Thornton C. R., Dewey F. M., Gilligan C. A.. ( 1993;). Development of monoclonal antibody-based immunological assays for the detection of live propagules of Rhizoctonia solani in soil. Plant Pathol42:763–773 [CrossRef]
    [Google Scholar]
  47. Thornton C. R., Pitt D., Wakley G. E., Talbot N. J.. ( 2002;). Production of a monoclonal antibody specific to the genus Trichoderma and closely related fungi, and its use to detect Trichoderma spp. in naturally infested composts. Microbiology148:1263–1279[PubMed]
    [Google Scholar]
  48. Thornton C. R., Groenhof A. C., Forrest R., Lamotte R.. ( 2004;). A one-step, immunochromatographic lateral flow device specific to Rhizoctonia solani and certain related species, and its use to detect and quantify R. solani in soil. Phytopathology94:280–288 [CrossRef][PubMed]
    [Google Scholar]
  49. Tronsmo A., Harman G. E.. ( 1993;). Detection and quantification of N-acetyl-β-D-glucosaminidase, chitobiosidase, and endochitinase in solutions and on gels. Anal Biochem208:74–79 [CrossRef][PubMed]
    [Google Scholar]
  50. Verma M., Brar S. K., Tyagi R. D., Surampalli R. Y., Valero J. R.. ( 2007;). Antagonistic fungi, Trichoderma spp.: Panoply of biological control. Biochem Eng J37:1–20 [CrossRef]
    [Google Scholar]
  51. Vinale F., Sivasithamparam K., Ghisalberti E. L., Marra R., Barbetti M. J., Li H., Woo S. L., Lorito M.. ( 2008;). A novel role for Trichoderma secondary metabolites in the interactions with plants. Physiol Mol Plant Pathol72:80–86 [CrossRef]
    [Google Scholar]
  52. Vinale F., Flematti G., Sivasithamparam K., Lorito M., Marra R., Skelton B. W., Ghisalberti E. L.. ( 2009;). Harzianic acid, an antifungal and plant growth promoting metabolite from Trichoderma harzianum. . J Nat Prod72:2032–2035 [CrossRef][PubMed]
    [Google Scholar]
  53. Viterbo A., Haran S., Friesem D., Ramot O., Chet I.. ( 2001;). Antifungal activity of a novel endochitinase gene (chit36) from Trichoderma harzianum Rifai TM. FEMS Microbiol Lett200:169–174 [CrossRef][PubMed]
    [Google Scholar]
  54. Walker L. A., Munro C. A., de Bruijn I., Lenardon M. D., McKinnon A., Gow N. A.. ( 2008;). Stimulation of chitin synthesis rescues Candida albicans from echinocandins. PLoS Pathog4:e1000040 [CrossRef][PubMed]
    [Google Scholar]
  55. Weaver M., Vedenyapina E., Kenerley C. M.. ( 2005;). Fitness, persistence, and responsiveness of a genetically engineered strain of Trichoderma virens in soil mesocosms. Appl Soil Ecol29:125–134 [CrossRef]
    [Google Scholar]
  56. Wessels J. G. H.. ( 1994;). Developmental regulation of fungal cell wall formation. Annu Rev Phytopathol32:413–437 [CrossRef]
    [Google Scholar]
  57. White S., McIntyre M., Berry D. R., McNeil B.. ( 2002;). The autolysis of industrial filamentous fungi. Crit Rev Biotechnol22:1–14 [CrossRef][PubMed]
    [Google Scholar]
  58. Wicklow D. T.. ( 1992;). Interference competition. The Fungal Community: its Organisation and Role in the Ecosystem265–274 Carroll G. C., Wicklow D. T.. New York: Marcel Dekker;
    [Google Scholar]
  59. Windham M. T., Elad Y., Baker R.. ( 1986;). A mechanism for increased plant growth induced by Trichoderma spp. Phytopathology76:518–521 [CrossRef]
    [Google Scholar]
  60. Wösten H. A., Moukha S. M., Sietsma J. H., Wessels J. G. H.. ( 1991;). Localization of growth and secretion of proteins in Aspergillus niger. . J Gen Microbiol137:2017–2023[PubMed][CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.051854-0
Loading
/content/journal/micro/10.1099/mic.0.051854-0
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error