1887

Abstract

species are ubiquitous soil fungi that hold enormous potential for the development of credible alternatives to agrochemicals and synthetic fertilizers in sustainable crop production. In this paper, we show that substantial improvements in plant productivity can be met by genetic modification of a plant-growth-promoting and biocontrol strain of , but that these improvements are obtained in the absence of disease pressure only. Using a quantitative monoclonal antibody-based ELISA, we show that an -acetyl-β--glucosaminidase-deficient mutant of , generated by insertional mutagenesis of the corresponding gene, has impaired saprotrophic competitiveness during antagonistic interactions with in soil. Furthermore, its fitness as a biocontrol agent of the pre-emergence damping-off pathogen is significantly reduced, and its ability to promote plant growth is constrained by the presence of both pathogens. This work shows that while gains in . -mediated plant-growth-promotion can be met through genetic manipulation of a single beneficial trait, such a modification has negative impacts on other aspects of its biology and ecology that contribute to its success as a saprotrophic competitor and antagonist of soil-borne pathogens. The work has important implications for fungal morphogenesis, demonstrating a clear link between hyphal architecture and secretory potential. Furthermore, it highlights the need for a holistic approach to the development of genetically modified strains for use as crop stimulants and biocontrol agents in plant agriculture.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.051854-0
2012-01-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/micro/158/1/84.html?itemId=/content/journal/micro/10.1099/mic.0.051854-0&mimeType=html&fmt=ahah

References

  1. Altomare C., Norvell W. A., Björkman T., Harman G. E. ( 1999). Solubilization of phosphates and micronutrients by the plant-growth-promoting and biocontrol fungus Trichoderma harzianum Rifai 1295-22. Appl Environ Microbiol 65:2926–2933[PubMed]
    [Google Scholar]
  2. Bae H., Sicher R. C., Kim M. S., Kim S.-H., Strem M. D., Melnick R. L., Bailey B. A. ( 2009). The beneficial endophyte Trichoderma hamatum isolate DIS 219b promotes growth and delays the onset of the drought response in Theobroma cacao. . J Exp Bot 60:3279–3295 [View Article][PubMed]
    [Google Scholar]
  3. Baek J.-M., Howell C. R., Kenerley C. M. ( 1999). The role of an extracellular chitinase from Trichoderma virens Gv29-8 in the biocontrol of Rhizoctonia solani. . Curr Genet 35:41–50 [View Article][PubMed]
    [Google Scholar]
  4. Borgia P. T., Iartchouk N., Riggle P. J., Winter K. R., Koltin Y., Bulawa C. E. ( 1996). The chsB gene of Aspergillus nidulans is necessary for normal hyphal growth and development. Fungal Genet Biol 20:193–203 [View Article][PubMed]
    [Google Scholar]
  5. Brunner K., Peterbauer C. K., Mach R. L., Lorito M., Zeilinger S., Kubicek C. P. ( 2003). The Nag1 N-acetylglucosaminidase of Trichoderma atroviride is essential for chitinase induction by chitin and of major relevance to biocontrol. Curr Genet 43:289–295 [View Article][PubMed]
    [Google Scholar]
  6. Chang Y.-C., Baker R., Kleifeld O., Chet I. ( 1986). Increased growth of plants in the presence of the biological control agent Trichoderma harzianum. . Plant Dis 70:145–148 [View Article]
    [Google Scholar]
  7. Chet I., Baker R. ( 1981). Isolation and biocontrol potential of Trichoderma hamatum from soil naturally suppressive to Rhizoctonia solani. . Phytopathology 71:286–290 [View Article]
    [Google Scholar]
  8. Chet I., Harman G. E., Baker R. ( 1981). Trichoderma hamatum: Its hyphal interaction with Rhizoctonia solani and Pythium spp. Microb Ecol 7:29–38 [View Article]
    [Google Scholar]
  9. Contreras-Cornejo H. A., Macías-Rodríguez L., Cortés-Penagos C., López-Bucio J. ( 2009). Trichoderma virens, a plant beneficial fungus, enhances biomass production and promotes lateral root growth through an auxin-dependent mechanism in Arabidopsis. Plant Physiol 149:1579–1592 [View Article][PubMed]
    [Google Scholar]
  10. Djonović S., Vittone G., Mendoza-Herrera A., Kenerley C. M. ( 2007). Enhanced biocontrol activity of Trichoderma virens transformants constitutively coexpressing β-1,3- and β-1,6-glucanase genes. Mol Plant Pathol 8:469–480 [View Article][PubMed]
    [Google Scholar]
  11. Duo-Chuan L. ( 2006). Review of fungal chitinases. Mycopathologia 161:345–360 [View Article][PubMed]
    [Google Scholar]
  12. Elorza M. V., Rico H., Sentandreu R. ( 1983). Calcofluor white alters the assembly of chitin fibrils in Saccharomyces cerevisiae and Candida albicans cells. J Gen Microbiol 129:1577–1582[PubMed]
    [Google Scholar]
  13. Flores A., Chet I., Herrera-Estrella A. ( 1997). Improved biocontrol activity of Trichoderma harzianum by over-expression of the proteinase-encoding gene prb1. . Curr Genet 31:30–37 [View Article][PubMed]
    [Google Scholar]
  14. Fortwendel J. R., Juvvadi P. R., Perfect B. Z., Rogg L. E., Perfect J. R., Steinbach W. J. ( 2010). Transcriptional regulation of chitin synthases by calcineurin controls paradoxical growth of Aspergillus fumigatus in response to caspofungin. Antimicrob Agents Chemother 54:1555–1563 [View Article][PubMed]
    [Google Scholar]
  15. Fuchs B. B., Mylonakis E. ( 2009). Our paths might cross: the role of the fungal cell wall integrity pathway in stress response and cross talk with other stress response pathways. Eukaryot Cell 8:1616–1625 [View Article][PubMed]
    [Google Scholar]
  16. Garrett S. D. ( 1970). Pathogenic Root Infecting Fungi Cambridge: Cambridge University Press;
    [Google Scholar]
  17. Gordon C. L., Khalaj V., Ram A. F., Archer D. B., Brookman J. L., Trinci A. P. J., Jeenes D. J., Doonan J. H., Wells B. & other authors ( 2000). Glucoamylase:green fluorescent protein fusions to monitor protein secretion in Aspergillus niger. . Microbiology 146:415–426[PubMed]
    [Google Scholar]
  18. Harman G. E., Howell C. R., Viterbo A., Chet I., Lorito M. ( 2004). Trichoderma species – opportunistic, avirulent plant symbionts. Nat Rev Microbiol 2:43–56 [View Article][PubMed]
    [Google Scholar]
  19. Horiuchi H., Fujiwara M., Yamashita S., Ohta A., Takagi M. ( 1999). Proliferation of intrahyphal hyphae caused by disruption of csmA, which encodes a class V chitin synthase with a myosin motor-like domain in Aspergillus nidulans. . J Bacteriol 181:3721–3729[PubMed]
    [Google Scholar]
  20. Horsch M., Mayer C., Sennhauser U., Rast D. M. ( 1997). β-N-acetylhexosaminidase: a target for the design of antifungal agents. Pharmacol Ther 76:187–218 [View Article][PubMed]
    [Google Scholar]
  21. Kaminskyj S. G. W., Heath M. C. ( 1982). An evaluation of the nitrous acid – 3-methyl-2-benzothiazolinone hydrazone hydrochloride – ferric chloride assay for chitin in rust fungi and rust-infected tissue. Can J Bot 60:2575–2580 [View Article]
    [Google Scholar]
  22. Kerley S. J., Read D. J. ( 1995). The biology of mycorrhiza in the Ericaceae. XV. Chitin degradation by Hymenoscyphus ericae and transfer of chitin-nitrogen to the host plant. New Phytol 131:369–375 [View Article]
    [Google Scholar]
  23. Kerley S. J., Read D. J. ( 1998). The biology of mycorrhiza in the Ericaceae. XX. Plant and mycorrhizal necromass as nitrogenous substrates for the ericoid mycorrhizal fungus Hymenoscyphus ericae and its host. New Phytol 139:353–360 [View Article]
    [Google Scholar]
  24. Kruszewska J. S., Butterweck A. H., Kurzatkowski W., Migdalski A., Kubicek C. P., Palamarczyk G. ( 1999). Overexpression of the Saccharomyces cerevisiae mannosylphosphodolichol synthase-encoding gene in Trichoderma reesei results in an increased level of protein secretion and abnormal cell ultrastructure. Appl Environ Microbiol 65:2382–2387[PubMed]
    [Google Scholar]
  25. Leake J. R., Read D. J. ( 1990). Chitin as a nitrogen source for mycorrhizal fungi. Mycol Res 94:993–995 [View Article]
    [Google Scholar]
  26. Lesage G., Sdicu A. M., Ménard P., Shapiro J., Hussein S., Bussey H. ( 2004). Analysis of beta-1,3-glucan assembly in Saccharomyces cerevisiae using a synthetic interaction network and altered sensitivity to caspofungin. Genetics 167:35–49 [View Article][PubMed]
    [Google Scholar]
  27. Limón M. C., Pintor-Toro J. A., Benítez T. ( 1999). Increased antifungal activity of Trichoderma harzianum transformants that overexpress a 33-kDa chitinase. Phytopathology 89:254–261 [View Article][PubMed]
    [Google Scholar]
  28. Lindahl B. D., Taylor A. F. S. ( 2004). Occurrence of N-acetyl hexosaminidase-encoding genes in ectomycorrhizal basidiomycetes. New Phytol 164:193–199 [View Article]
    [Google Scholar]
  29. Lorito M. ( 1998). Chitinolytic enzymes and their genes. Trichoderma and Gliocladium: Enzymes, Biological Control and Commercial Applications73–99 Harman G. E., Kubicek C. P. London, UK: Taylor and Francis Ltd;
    [Google Scholar]
  30. Malvárez G., Carbone I., Grünwald N. J., Subbarao K. V., Schafer M., Kohn L. M. ( 2007). New populations of Sclerotinia sclerotiorum from lettuce in California and peas and lentils in Washington. Phytopathology 97:470–483 [View Article][PubMed]
    [Google Scholar]
  31. Müller C., Hjort C. M., Hansen K., Nielsen J. ( 2002). Altering the expression of two chitin synthase genes differentially affects the growth and morphology of Aspergillus oryzae. . Microbiology 148:4025–4033[PubMed]
    [Google Scholar]
  32. Ortíz-Castro R., Contreras-Cornejo H. A., Macías-Rodríguez L., López-Bucio J. ( 2009). The role of microbial signals in plant growth and development. Plant Signal Behav 4:701–712 [View Article][PubMed]
    [Google Scholar]
  33. Perlińska-Lenart U., Orlowski J., Laudy A. E., Zdebska E., Palamarczyk G., Kruszewska J. S. ( 2006). Glycoprotein hypersecretion alters the cell wall in Trichoderma reesei strains expressing the Saccharomyces cerevisiae dolichylphosphate mannose synthase gene. Appl Environ Microbiol 72:7778–7784 [View Article][PubMed]
    [Google Scholar]
  34. Rast D. M., Horsch M., Furter R., Gooday G. W. ( 1991). A complex chitinolytic system in exponentially growing mycelium of Mucor rouxii: properties and function. J Gen Microbiol 137:2797–2810[PubMed] [CrossRef]
    [Google Scholar]
  35. Read D. J., Perez-Moreno J. ( 2003). Mycorrhizas and nutrient cycling in ecosystems – a journey towards relevance?. New Phytol 157:475–492 [View Article]
    [Google Scholar]
  36. Reyes F., Calatayud J., Vazquez C., Martínez M. J. ( 1989a). Beta-N-acetylglucosaminidase from Aspergillus nidulans which degrades chitin oligomers during autolysis. FEMS Microbiol Lett 53:83–87[PubMed]
    [Google Scholar]
  37. Reyes F., Calatayud J., Vazquez C., Martínez M. J. ( 1989b). β-N-acetylglucosaminidase from Aspergillus nidulans implicated in the autolysis of the cell wall. FEMS Microbiol Rev 11:317–338
    [Google Scholar]
  38. Sahai A. S., Manocha M. S. ( 1993). Chitinases of fungi and plants: their involvement in morphogenesis and host-parasite interaction. FEMS Microbiol Rev 11:317–338 [View Article]
    [Google Scholar]
  39. Sambrook J., Fritsch E. F., Maniatis T. ( 1989). Molecular Cloning: a Laboratory Manual, 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press;
    [Google Scholar]
  40. Sweigard J., Chumley F., Carroll A., Farrall L., Valent B. ( 1997). A series of vectors for fungal transformation. Fungal Genet Newsl 44:52–53
    [Google Scholar]
  41. Thornton C. R. ( 2004). An immunological approach to quantifying the saprotrophic growth dynamics of Trichoderma species during antagonistic interactions with Rhizoctonia solani in a soil-less mix. Environ Microbiol 6:323–334 [View Article][PubMed]
    [Google Scholar]
  42. Thornton C. R. ( 2005). Use of monoclonal antibodies to quantify the dynamics of α-galactosidase and endo-1,4-β-glucanase production by Trichoderma hamatum during saprotrophic growth and sporulation in peat. Environ Microbiol 7:737–749 [View Article][PubMed]
    [Google Scholar]
  43. Thornton C. R. ( 2008). Tracking fungi in soil with monoclonal antibodies. Eur J Plant Pathol 121:347–353 [View Article]
    [Google Scholar]
  44. Thornton C. R., Gilligan C. A. ( 1999). Quantification of the effect of the hyperparasite Trichoderma harzianum on the saprotrophic growth dynamics of Rhizoctonia solani in compost using a monoclonal antibody-based ELISA. Mycol Res 103:443–448 [View Article]
    [Google Scholar]
  45. Thornton C. R., Jarvis B. C., Cooke R. C. ( 1991). A chitin assay for the enumeration of Plasmodiophora brassicae resting spores in clubroot tissue. Mycol Res 95:879–882 [View Article]
    [Google Scholar]
  46. Thornton C. R., Dewey F. M., Gilligan C. A. ( 1993). Development of monoclonal antibody-based immunological assays for the detection of live propagules of Rhizoctonia solani in soil. Plant Pathol 42:763–773 [View Article]
    [Google Scholar]
  47. Thornton C. R., Pitt D., Wakley G. E., Talbot N. J. ( 2002). Production of a monoclonal antibody specific to the genus Trichoderma and closely related fungi, and its use to detect Trichoderma spp. in naturally infested composts. Microbiology 148:1263–1279[PubMed]
    [Google Scholar]
  48. Thornton C. R., Groenhof A. C., Forrest R., Lamotte R. ( 2004). A one-step, immunochromatographic lateral flow device specific to Rhizoctonia solani and certain related species, and its use to detect and quantify R. solani in soil. Phytopathology 94:280–288 [View Article][PubMed]
    [Google Scholar]
  49. Tronsmo A., Harman G. E. ( 1993). Detection and quantification of N-acetyl-β-D-glucosaminidase, chitobiosidase, and endochitinase in solutions and on gels. Anal Biochem 208:74–79 [View Article][PubMed]
    [Google Scholar]
  50. Verma M., Brar S. K., Tyagi R. D., Surampalli R. Y., Valero J. R. ( 2007). Antagonistic fungi, Trichoderma spp.: Panoply of biological control. Biochem Eng J 37:1–20 [View Article]
    [Google Scholar]
  51. Vinale F., Sivasithamparam K., Ghisalberti E. L., Marra R., Barbetti M. J., Li H., Woo S. L., Lorito M. ( 2008). A novel role for Trichoderma secondary metabolites in the interactions with plants. Physiol Mol Plant Pathol 72:80–86 [View Article]
    [Google Scholar]
  52. Vinale F., Flematti G., Sivasithamparam K., Lorito M., Marra R., Skelton B. W., Ghisalberti E. L. ( 2009). Harzianic acid, an antifungal and plant growth promoting metabolite from Trichoderma harzianum. . J Nat Prod 72:2032–2035 [View Article][PubMed]
    [Google Scholar]
  53. Viterbo A., Haran S., Friesem D., Ramot O., Chet I. ( 2001). Antifungal activity of a novel endochitinase gene (chit36) from Trichoderma harzianum Rifai TM. FEMS Microbiol Lett 200:169–174 [View Article][PubMed]
    [Google Scholar]
  54. Walker L. A., Munro C. A., de Bruijn I., Lenardon M. D., McKinnon A., Gow N. A. ( 2008). Stimulation of chitin synthesis rescues Candida albicans from echinocandins. PLoS Pathog 4:e1000040 [View Article][PubMed]
    [Google Scholar]
  55. Weaver M., Vedenyapina E., Kenerley C. M. ( 2005). Fitness, persistence, and responsiveness of a genetically engineered strain of Trichoderma virens in soil mesocosms. Appl Soil Ecol 29:125–134 [View Article]
    [Google Scholar]
  56. Wessels J. G. H. ( 1994). Developmental regulation of fungal cell wall formation. Annu Rev Phytopathol 32:413–437 [View Article]
    [Google Scholar]
  57. White S., McIntyre M., Berry D. R., McNeil B. ( 2002). The autolysis of industrial filamentous fungi. Crit Rev Biotechnol 22:1–14 [View Article][PubMed]
    [Google Scholar]
  58. Wicklow D. T. ( 1992). Interference competition. The Fungal Community: its Organisation and Role in the Ecosystem265–274 Carroll G. C., Wicklow D. T. New York: Marcel Dekker;
    [Google Scholar]
  59. Windham M. T., Elad Y., Baker R. ( 1986). A mechanism for increased plant growth induced by Trichoderma spp. Phytopathology 76:518–521 [View Article]
    [Google Scholar]
  60. Wösten H. A., Moukha S. M., Sietsma J. H., Wessels J. G. H. ( 1991). Localization of growth and secretion of proteins in Aspergillus niger. . J Gen Microbiol 137:2017–2023[PubMed] [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.051854-0
Loading
/content/journal/micro/10.1099/mic.0.051854-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error