1887

Abstract

The coffee berry borer (CBB; ) is a major pest of coffee responsible for significant crop losses worldwide. The entomopathogenic fungus represents a natural means of controlling this insect pest; however, little is known concerning the molecular determinants that contribute to the virulence of the fungus towards the CBB. In order to examine genes involved in insect virulence, two expressed sequence tag (EST) libraries, representing germinating conidia and growing hyphae/mycelia of cells grown on cuticular extracts of the CBB were constructed and analysed. In total, 4186 cDNA transcripts were obtained, which included 2141 from the cuticle-germinated conidia and 2045 from the cuticle-grown mycelium libraries, respectively. The average sequence length obtained was 470 bp and transcript assembly resulted in a set of 1271 and 1305 unique gene sequences for the conidial and mycelia libraries, respectively. Around 50 % of the sequences in each library could be annotated by gene ontology terms. An analysis of the two generated libraries as well as a previously reported EST library of grown on chitin was performed. Between the cuticle-germinated conidia and the cuticle-grown mycelia libraries, 322 unique gene sequences were shared, of which 90 % could be annotated, leaving 949 unique cuticle-germinated conidial genes and 983 unique growing hyphae/mycelia genes of which around 65 % were annotated. ESTs shared between the libraries indicated a basic response pattern for against , which included genes implicated in pathogenicity. The expression profiles of four genes were evaluated with a cyclophilin, an alkaline-like serine protease and a mitogen-activated protein kinase (MAPK), showing elevated expression during initial phases of infection, i.e. conidia germinating on insect extracts. These data provide clues and gene candidates for further exploration concerning the biology and molecular mechanisms of entomopathogenicity by this fungus.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.051664-0
2012-07-01
2020-12-05
Loading full text...

Full text loading...

/deliver/fulltext/micro/158/7/1826.html?itemId=/content/journal/micro/10.1099/mic.0.051664-0&mimeType=html&fmt=ahah

References

  1. Bagga S., Hu G., Screen S. E., St Leger R. J.. ( 2004;). Reconstructing the diversification of subtilisins in the pathogenic fungus Metarhizium anisopliae . Gene324:159–169 [CrossRef][PubMed]
    [Google Scholar]
  2. Bidochka M. J., Khachatourians G. G.. ( 1992;). Growth of the entomopathogenic fungus Beauveria bassiana on cuticular components from the migratory grasshopper, Melanotus sanguinipes . J Invertebr Pathol59:165–173 [CrossRef]
    [Google Scholar]
  3. Bidochka M. J., Clark D. C., Lewis M. W., Keyhani N. O.. ( 2010;). Could insect phagocytic avoidance by entomogenous fungi have evolved via selection against soil amoeboid predators?. Microbiology156:2164–2171 [CrossRef][PubMed]
    [Google Scholar]
  4. Calderone R. A., Fonzi W. A.. ( 2001;). Virulence factors of Candida albicans . Trends Microbiol9:327–335 [CrossRef][PubMed]
    [Google Scholar]
  5. Cárdenas A. B., Villalba D. A., Bustillo A. E., Montoya E. C., Góngora C. E.. ( 2007;). Eficacia de mezclas de cepas del hongo Beauveria bassiana en el control de la broca del café. Revista Cenicafé58:293–303
    [Google Scholar]
  6. Cary J. W.. ( 2004;). Cell biology biochemical and molecular technology. I. Secondary metabolic gene clusters in filamentous fungi. Handbook of Fungal Biotechnology83–84 Arora D. K.. New York: Marcel Dekker, Inc;
    [Google Scholar]
  7. Cho E. M., Liu L., Farmerie W., Keyhani N. O.. ( 2006a;). EST analysis of cDNA libraries from the entomopathogenic fungus Beauveria (Cordyceps) bassiana. I. Evidence for stage-specific gene expression in aerial conidia, in vitro blastospores and submerged conidia. Microbiology152:2843–2854 [CrossRef][PubMed]
    [Google Scholar]
  8. Cho E. M., Boucias D., Keyhani N. O.. ( 2006b;). EST analysis of cDNA libraries from the entomopathogenic fungus Beauveria (Cordyceps) bassiana. II. Fungal cells sporulating on chitin and producing oosporein. Microbiology152:2855–2864 [CrossRef][PubMed]
    [Google Scholar]
  9. Conesa A., Götz S., García-Gómez J. M., Terol J., Talón M., Robles M.. ( 2005;). Blast2GO: a universal tool for annotation, visualization and analysis in functional genomics research. Bioinformatics21:3674–3676 [CrossRef][PubMed]
    [Google Scholar]
  10. Dugave C.. ( 2006;). Peptidyl prolyl isomerases: new targets for novel therapeutics. cis–trans Isomerization in Biochemistry273–276 Dugave C.. Weinheim: Wiley, VCH verlag GmbH & Co;
    [Google Scholar]
  11. Duque H., Baker P. S.. ( 2003;). Devouring Profit; the Socio-Economics of Coffee Berry Borer IPM Chinchina, Colombia: The Commodities Press;
    [Google Scholar]
  12. Fan Y., Zhang S., Kruer N., Keyhani N. O.. ( 2011;). High-throughput insertion mutagenesis and functional screening in the entomopathogenic fungus Beauveria bassiana . J Invertebr Pathol106:274–279 [CrossRef][PubMed]
    [Google Scholar]
  13. Fan Y., Borovsky D., Hawkings C., Ortiz-Urquiza A., Keyhani N. O.. ( 2012;). Exploiting host molecules to augment mycoinsecticide virulence. Nat Biotechnol30:35–37 [CrossRef][PubMed]
    [Google Scholar]
  14. Fischer G.. ( 2006;). Enzymes catalyzing peptide cis–trans isomerizations. cis–trans Isomerization in Biochemistry195–215 Dugave C.. Weinheim: Wiley VCH verlag GmbH & Co;[CrossRef]
    [Google Scholar]
  15. Freimoser F. M., Screen S., Bagga S., Hu G., St Leger R. J.. ( 2003a;). Expressed sequence tag (EST) analysis of two subspecies of Metarhizium anisopliae reveals a plethora of secreted proteins with potential activity in insect hosts. Microbiology149:239–247 [CrossRef][PubMed]
    [Google Scholar]
  16. Freimoser F. M., Screen S., Hu G., St Leger R.. ( 2003b;). EST analysis of genes expressed by the zygomycete pathogen Conidiobolus coronatus during growth on insect cuticle. Microbiology149:1893–1900 [CrossRef][PubMed]
    [Google Scholar]
  17. Góngora C. E., Marín P., Benavides P.. ( 2009;). Claves para el éxito del hongo Beauveria bassiana como controlador biológico de la broca del café. Avance Técnico Cenicafé384:
    [Google Scholar]
  18. Gressel J.. ( 2007;). Failsafe mechanisms for preventing gene flow and organism dispersal of enhanced microbial biocontrol agents. Novel Biotechnologies for Biocontrol Agent Enhancement and Management353–362 Vurro M., Gressel J.. The Netherlands: Springer; [CrossRef]
    [Google Scholar]
  19. Gressel J., Meir S., Herschkovitz Y., Al-Ahmad H., Greenspoon I., Babalola O., Amsellem Z.. ( 2007;). Approaches to and successes in developing transgenically enhanced mycoherbicides. Novel Biotechnologies for Biocontrol Agent Enhancement and Management297–305 Vurro M., Gressel J.. The Netherlands: Springer; [CrossRef]
    [Google Scholar]
  20. Hajek A. E., St Leger R. J.. ( 1994;). Interactions between fungal pathogens and insect hosts. Annu Rev Entomol39:293–322 [CrossRef]
    [Google Scholar]
  21. Holder D. J., Keyhani N. O.. ( 2005;). Adhesion of the entomopathogenic fungus Beauveria (Cordyceps) bassiana to substrata. Appl Environ Microbiol71:5260–5266 [CrossRef][PubMed]
    [Google Scholar]
  22. Holder D. J., Kirkland B. H., Lewis M. W., Keyhani N. O.. ( 2007;). Surface characteristics of the entomopathogenic fungus Beauveria (Cordyceps) bassiana . Microbiology153:3448–3457 [CrossRef][PubMed]
    [Google Scholar]
  23. Jackson M. A., Dunlap C. A., Jaronski S. T.. ( 2010;). Ecological considerations in producing and formulating fungal entomopathogens for use in insect biocontrol. BioControl55:129–145 [CrossRef]
    [Google Scholar]
  24. Jaramillo J., Chabi-Olaye A., Kamonjo C., Jaramillo A., Vega F. E., Poehling H.-M., Borgemeister C.. ( 2009;). Thermal tolerance of the coffee berry borer Hypothenemus hampei: predictions of climate change impact on a tropical insect pest. PLoS ONE4:e6487 [CrossRef][PubMed]
    [Google Scholar]
  25. Keller N. P., Hohn T. M.. ( 1997;). Metabolic pathway gene clusters in filamentous fungi. Fungal Genet Biol21:17–29 [CrossRef]
    [Google Scholar]
  26. Kosmidou E., Lunness P., Doonan J. H.. ( 2001;). A type 2A protein phosphatase gene from Aspergillus nidulans is involved in hyphal morphogenesis. Curr Genet39:25–34 [CrossRef][PubMed]
    [Google Scholar]
  27. Larionov A., Krause A., Miller W.. ( 2005;). A standard curve based method for relative real time PCR data processing. BMC Bioinformatics6:62 [CrossRef][PubMed]
    [Google Scholar]
  28. Lewis M. W., Robalino I. V., Keyhani N. O.. ( 2009;). Uptake of the fluorescent probe FM4-64 by hyphae and haemolymph-derived in vivo hyphal bodies of the entomopathogenic fungus Beauveria bassiana . Microbiology155:3110–3120 [CrossRef][PubMed]
    [Google Scholar]
  29. Meng Q. L., Tang D. J., Fan Y. Y., Li Z. J., Zhang H., He Y. Q., Jiang B. L., Lu G. T., Tang J. L.. ( 2011;). Effect of interactions between Mip and PrtA on the full extracellular protease activity of Xanthomonas campestris pathovar campestris . FEMS Microbiol Lett323:180–187 [CrossRef][PubMed]
    [Google Scholar]
  30. Pasqualato S., Renault L., Cherfils J.. ( 2002;). Arf, Arl, Arp and Sar proteins: a family of GTP-binding proteins with a structural device for ‘front–back’ communication. EMBO Rep3:1035–1041 [CrossRef][PubMed]
    [Google Scholar]
  31. Ruiz-Herrera J., Elorza M. A., Alvarez P. E., Sentandreu R.. 2004; Fungal dimorphism and pathogenicity: biosynthesis of the fungal cell wall. Pathogenic Fungi: Structural Biology and Taxonomy41–44 San-Blas G., Calderone R. A.. Wymondham: Caister Academic Press;
    [Google Scholar]
  32. San-Blas G., Niño Vega G.. 2004; Fungal dimorphism and pathogenicity: morphogenesis in other agents of systemic mycoses. Pathogenic Fungi: Structural Biology and Taxonomy167–169 San-Blas G., Calderone R. A.. Wymondham: Caister Academic Press;
    [Google Scholar]
  33. Sietsma J. H., Din A. B., Ziv V., Sjollema K. A., Yarden O.. ( 1996;). The localization of chitin synthase in membranous vesicles (chitosomes) in Neurospora crassa . Microbiology142:1591–1596 [CrossRef][PubMed]
    [Google Scholar]
  34. St Leger R.. ( 1993;). Biology and mechanisms of insect-cuticle invasion by deuteromycete fungal pathogens. Parasites and Pathogens of Insects211–229 Beckage N. E., Thompson S. N., Federici B. A.. San Diego: Academic Press;
    [Google Scholar]
  35. St Leger R. J., Joshi L., Bidochka M. J., Roberts D. W.. ( 1996;). Construction of an improved mycoinsecticide overexpressing a toxic protease. Proc Natl Acad Sci U S A93:6349–6354 [CrossRef][PubMed]
    [Google Scholar]
  36. Untergasser A., Nijveen H., Rao X., Bisseling T., Geurts R., Leunissen J. A. M.. ( 2007;). Primer3Plus, an enhanced web interface to Primer3. Nucleic Acids Res35:Web Server issueW71–W74 [CrossRef][PubMed]
    [Google Scholar]
  37. Viaud M. C., Balhadère P. V., Talbot N. J.. ( 2002;). A Magnaporthe grisea cyclophilin acts as a virulence determinant during plant infection. Plant Cell14:917–930 [CrossRef][PubMed]
    [Google Scholar]
  38. Viaud M., Brunet-Simon A., Brygoo Y., Pradier J. M., Levis C.. ( 2003;). Cyclophilin A and calcineurin functions investigated by gene inactivation, cyclosporin A inhibition and cDNA arrays approaches in the phytopathogenic fungus Botrytis cinerea . Mol Microbiol50:1451–1465 [CrossRef][PubMed]
    [Google Scholar]
  39. Wanchoo A., Lewis M. W., Keyhani N. O.. ( 2009;). Lectin mapping reveals stage-specific display of surface carbohydrates in in vitro and haemolymph-derived cells of the entomopathogenic fungus Beauveria bassiana . Microbiology155:3121–3133 [CrossRef][PubMed]
    [Google Scholar]
  40. Wang P., Cardenas M. E., Cox G. M., Perfect J. R., Heitman J.. ( 2001;). Two cyclophilin A homologs with shared and distinct functions important for growth and virulence of Cryptococcus neoformans . EMBO Rep2:511–518[PubMed][CrossRef]
    [Google Scholar]
  41. Wang B., Liu X., Wu W., Liu X., Li S.. ( 2009;). Purification, characterization, and gene cloning of an alkaline serine protease from a highly virulent strain of the nematode-endoparasitic fungus Hirsutella rhossiliensis . Microbiol Res164:665–673 [CrossRef][PubMed]
    [Google Scholar]
  42. Xu J. R.. ( 2000;). MAP kinases in fungal pathogens. Fungal Genet Biol31:137–152 [CrossRef][PubMed]
    [Google Scholar]
  43. Xu J. R., Hamer J. E.. ( 1996;). MAP kinase and cAMP signaling regulate infection structure formation and pathogenic growth in the rice blast fungus Magnaporthe grisea . Genes Dev10:2696–2706 [CrossRef][PubMed]
    [Google Scholar]
  44. Yarden O.. ( 2004;). Cell biology of hyphae. The Handbook of Fungal Biotechnology1–8 Arora D. K.. New York: Marcel Dekker, Inc;
    [Google Scholar]
  45. Zhang Z., Schwartz S., Wagner L., Miller W.. ( 2000;). A greedy algorithm for aligning DNA sequences. J Comput Biol7:203–214 [CrossRef][PubMed]
    [Google Scholar]
  46. Zhang Y., Zhao J., Fang W., Zhang J., Luo Z., Zhang M., Fan Y., Pei Y.. ( 2009;). Mitogen-activated protein kinase hog1 in the entomopathogenic fungus Beauveria bassiana regulates environmental stress responses and virulence to insects. Appl Environ Microbiol75:3787–3795 [CrossRef][PubMed]
    [Google Scholar]
  47. Zhang S., Fan Y., Xia Y. X., Keyhani N. O.. ( 2010;). Sulfonylurea resistance as a new selectable marker for the entomopathogenic fungus Beauveria bassiana . Appl Microbiol Biotechnol87:1151–1156 [CrossRef][PubMed]
    [Google Scholar]
  48. Zhang S. Z., Xia Y. X., Keyhani N. O.. ( 2011a;). Contribution of the gas1 gene of the entomopathogenic fungus Beauveria bassiana, encoding a putative glycosylphosphatidylinositol-anchored β-1,3-glucanosyltransferase, to conidial thermotolerance and virulence. Appl Environ Microbiol77:2676–2684 [CrossRef][PubMed]
    [Google Scholar]
  49. Zhang S. Z., Xia Y. X., Kim B., Keyhani N. O.. ( 2011b;). Two hydrophobins are involved in fungal spore coat rodlet layer assembly and each play distinct roles in surface interactions, development and pathogenesis in the entomopathogenic fungus, Beauveria bassiana . Mol Microbiol80:811–826 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.051664-0
Loading
/content/journal/micro/10.1099/mic.0.051664-0
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error