1887

Abstract

Metal homeostasis is important in all living cells in order to provide sufficient amounts of metal ions for biological processes but to prevent toxic effects by excess amounts. Here we show that the gene product of RSP_2889 of the facultatively photosynthetic bacterium is homologous to CueR, a regulator of copper metabolism in and other bacteria. CueR binds to the promoter regions of genes for a copper-translocating ATPase and for a copper chaperone and is responsible for their high expression when cells are exposed to elevated levels of copper ions. While deletion of RSP_2889 has no significant effect on copper resistance, expression from a low-copy-number plasmid mediates increased sensitivity to copper.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.051607-0
2011-12-01
2020-07-09
Loading full text...

Full text loading...

/deliver/fulltext/micro/157/12/3306.html?itemId=/content/journal/micro/10.1099/mic.0.051607-0&mimeType=html&fmt=ahah

References

  1. Adaikkalam V., Swarup S.. ( 2002;). Molecular characterization of an operon, cueAR, encoding a putative P1-type ATPase and a MerR-type regulatory protein involved in copper homeostasis in Pseudomonas putida. . Microbiology148:2857–2867[PubMed]
    [Google Scholar]
  2. Banci L., Bertini I., Del Conte R., Markey J., Ruiz-Dueñas F. J.. ( 2001;). Copper trafficking: the solution structure of Bacillus subtilis CopZ. Biochemistry40:15660–15668 [CrossRef][PubMed]
    [Google Scholar]
  3. Bremner I.. ( 1998;). Manifestations of copper excess. Am J Clin Nutr67:Suppl1069S–1073S[PubMed]
    [Google Scholar]
  4. Brown N. L., Stoyanov J. V., Kidd S. P., Hobman J. L.. ( 2003;). The MerR family of transcriptional regulators. FEMS Microbiol Rev27:145–163[CrossRef]
    [Google Scholar]
  5. Drews G.. ( 1983;). Mikrobiologisches Praktikum Heidelberg: Springer Verlag;[CrossRef]
    [Google Scholar]
  6. Glaeser J., Klug G.. ( 2005;). Photo-oxidative stress in Rhodobacter sphaeroides: protective role of carotenoids and expression of selected genes. Microbiology151:1927–1938 [CrossRef][PubMed]
    [Google Scholar]
  7. Glaeser J., Zobawa M., Lottspeich F., Klug G.. ( 2007;). Protein synthesis patterns reveal a complex regulatory response to singlet oxygen in Rhodobacter. . J Proteome Res6:2460–2471 [CrossRef][PubMed]
    [Google Scholar]
  8. Gomelsky L., Sram J., Moskvin O. V., Horne I. M., Dodd H. N., Pemberton J. M., McEwan A. G., Kaplan S., Gomelsky M.. ( 2003;). Identification and in vivo characterization of PpaA, a regulator of photosystem formation in Rhodobacter sphaeroides. . Microbiology149:377–388 [CrossRef][PubMed]
    [Google Scholar]
  9. Greenberg J. T., Monach P., Chou J. H., Josephy P. D., Demple B.. ( 1990;). Positive control of a global antioxidant defense regulon activated by superoxide-generating agents in Escherichia coli. . Proc Natl Acad Sci U S A87:6181–6185 [CrossRef][PubMed]
    [Google Scholar]
  10. Halliwell B., Gutteridge J. M.. ( 1984;). Free radicals, lipid peroxidation, and cell damage. Lancet324:1095 [CrossRef][PubMed]
    [Google Scholar]
  11. Imlay J. A.. ( 2003;). Pathways of oxidative damage. Annu Rev Microbiol57:395–418 [CrossRef][PubMed]
    [Google Scholar]
  12. Kim J. S., Kim M. H., Joe M. H., Song S. S., Lee I. S., Choi S. Y.. ( 2002;). The sctR of Salmonella enterica serovar Typhimurium encoding a homologue of MerR protein is involved in the copper-responsive regulation of cuiD . FEMS Microbiol Lett210:99–103 [CrossRef][PubMed]
    [Google Scholar]
  13. Macomber L., Imlay J. A.. ( 2009;). The iron-sulfur clusters of dehydratases are primary intracellular targets of copper toxicity. Proc Natl Acad Sci U S A106:8344–8349 [CrossRef][PubMed]
    [Google Scholar]
  14. Münch R., Hiller K., Barg H., Heldt D., Linz S., Wingender E., Jahn D.. ( 2003;). PRODORIC: prokaryotic database of gene regulation. Nucleic Acids Res31:266–269 [CrossRef][PubMed]
    [Google Scholar]
  15. Münch R., Hiller K., Grote A., Scheer M., Klein J., Schobert M., Jahn D.. ( 2005;). Virtual Footprint and PRODORIC: an integrative framework for regulon prediction in prokaryotes. Bioinformatics21:4187–4189 [CrossRef][PubMed]
    [Google Scholar]
  16. Nawapan S., Charoenlap N., Charoenwuttitam A., Saenkham P., Mongkolsuk S., Vattanaviboon P.. ( 2009;). Functional and expression analyses of the cop operon, required for copper resistance in Agrobacterium tumefaciens. . J Bacteriol191:5159–5168 [CrossRef][PubMed]
    [Google Scholar]
  17. Nuss A. M., Glaeser J., Klug G.. ( 2009;). RpoH(II) activates oxidative-stress defense systems and is controlled by RpoE in the singlet oxygen-dependent response in Rhodobacter sphaeroides. . J Bacteriol191:220–230 [CrossRef][PubMed]
    [Google Scholar]
  18. Outten F. W., Outten C. E., Hale J., O’Halloran T. V.. ( 2000;). Transcriptional activation of an Escherichia coli copper efflux regulon by the chromosomal MerR homologue, cueR. . J Biol Chem275:31024–31029 [CrossRef][PubMed]
    [Google Scholar]
  19. Petersen C., Møller L. B.. ( 2000;). Control of copper homeostasis in Escherichia coli by a P-type ATPase, CopA, and a MerR-like transcriptional activator, CopR. Gene261:289–298 [CrossRef][PubMed]
    [Google Scholar]
  20. Pfaffl M. W.. ( 2001;). A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res29:e45 [CrossRef][PubMed]
    [Google Scholar]
  21. Reeve W. G., Tiwari R. P., Kale N. B., Dilworth M. J., Glenn A. R.. ( 2002;). ActP controls copper homeostasis in Rhizobium leguminosarum bv. viciae and Sinorhizobium meliloti preventing low pH-induced copper toxicity. Mol Microbiol43:981–991 [CrossRef][PubMed]
    [Google Scholar]
  22. Rensing C., Grass G.. ( 2003;). Escherichia coli mechanisms of copper homeostasis in a changing environment. FEMS Microbiol Rev27:197–213 [CrossRef][PubMed]
    [Google Scholar]
  23. Stoyanov J. V., Hobman J. L., Brown N. L.. ( 2001;). CueR (YbbI) of Escherichia coli is a MerR family regulator controlling expression of the copper exporter CopA. Mol Microbiol39:502–512 [CrossRef][PubMed]
    [Google Scholar]
  24. Touati D.. ( 2000;). Iron and oxidative stress in bacteria. Arch Biochem Biophys373:1–6 [CrossRef][PubMed]
    [Google Scholar]
  25. Zeller T., Klug G.. ( 2004;). Detoxification of hydrogen peroxide and expression of catalase genes in Rhodobacter. . Microbiology150:3451–3462 [CrossRef][PubMed]
    [Google Scholar]
  26. Zeller T., Moskvin O. V., Li K., Klug G., Gomelsky M.. ( 2005;). Transcriptome and physiological responses to hydrogen peroxide of the facultatively phototrophic bacterium Rhodobacter sphaeroides. . J Bacteriol187:7232–7242 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.051607-0
Loading
/content/journal/micro/10.1099/mic.0.051607-0
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error