1887

Abstract

transiently accumulates glycogen as carbon capacitor during the early exponential growth phase in media containing carbohydrates. In some bacteria glycogen is synthesized by the consecutive action of ADP-glucose pyrophosphorylase (GlgC), glycogen synthase (GlgA) and glycogen branching enzyme (GlgB). GlgC and GlgA of have been shown to be necessary for glycogen accumulation in this organism. However, although cg1381 has been annotated as the putative gene, cg1381 and its gene product have not been characterized and their role in transient glycogen accumulation has not yet been investigated. We show here that the cg1381 gene product of catalyses the formation of α-1,6-glycosidic bonds in polysaccharides and thus represents a glycogen branching enzyme. RT-PCR experiments revealed to be co-transcribed with , probably encoding a maltosyltransferase. Promoter activity assays with the promoter region revealed carbon-source-dependent expression of the operon. Characterization of the growth and glycogen content of -deficient and -overexpressing strains showed that the glycogen branching enzyme GlgB is essential for glycogen formation in . Taken together these results suggest that an interplay of the enzymes GlgC, GlgA and GlgB is not essential for growth, but is required for synthesis of the transient carbon capacitor glycogen in .

Funding
This study was supported by the:
  • BMBF (Award 0315598C)
  • SysEnCor (Award 0315589B)
  • GenoMik-Transfer
Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.051565-0
2011-11-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/micro/157/11/3243.html?itemId=/content/journal/micro/10.1099/mic.0.051565-0&mimeType=html&fmt=ahah

References

  1. Abad M. C., Binderup K., Rios-Steiner J., Arni R. K., Preiss J., Geiger J. H. ( 2002). The X-ray crystallographic structure of Escherichia coli branching enzyme. J Biol Chem 277:42164–42170 [View Article][PubMed]
    [Google Scholar]
  2. Alonso-Casajús N., Dauvillée D., Viale A. M., Muñoz F. J., Baroja-Fernández E., Morán-Zorzano M. T., Eydallin G., Ball S., Pozueta-Romero J. ( 2006). Glycogen phosphorylase, the product of the glgP gene, catalyzes glycogen breakdown by removing glucose units from the nonreducing ends in Escherichia coli . J Bacteriol 188:5266–5272 [View Article][PubMed]
    [Google Scholar]
  3. Altschul S. F., Gish W., Miller W., Myers E. W., Lipman D. J. ( 1990). Basic local alignment search tool. J Mol Biol 215:403–410[PubMed] [CrossRef]
    [Google Scholar]
  4. Auchter M., Arndt A., Eikmanns B. J. ( 2009). Dual transcriptional control of the acetaldehyde dehydrogenase gene ald of Corynebacterium glutamicum by RamA and RamB. J Biotechnol 140:84–91 [View Article][PubMed]
    [Google Scholar]
  5. Ballicora M. A., Iglesias A. A., Preiss J. ( 2003). ADP-glucose pyrophosphorylase, a regulatory enzyme for bacterial glycogen synthesis. Microbiol Mol Biol Rev 67:213–225 [View Article][PubMed]
    [Google Scholar]
  6. Boyer C., Preiss J. ( 1977). Biosynthesis of bacterial glycogen. Purification and properties of the Escherichia coli B α-1,4,-glucan: α-1,4-glucan 6-glycosyltansferase. Biochemistry 16:3693–3699 [View Article][PubMed]
    [Google Scholar]
  7. Chandra G., Chater K. F., Bornemann S. ( 2011). Unexpected and widespread connections between bacterial glycogen and trehalose metabolism. Microbiology 157:1565–1572 [View Article][PubMed]
    [Google Scholar]
  8. Cramer A., Gerstmeir R., Schaffer S., Bott M., Eikmanns B. J. ( 2006). Identification of RamA, a novel LuxR-type transcriptional regulator of genes involved in acetate metabolism of Corynebacterium glutamicum . J Bacteriol 188:2554–2567 [View Article][PubMed]
    [Google Scholar]
  9. Dauvillée D., Kinderf I. S., Li Z., Kosar-Hashemi B., Samuel M. S., Rampling L., Ball S., Morell M. K. ( 2005). Role of the Escherichia coli glgX gene in glycogen metabolism. J Bacteriol 187:1465–1473 [View Article][PubMed]
    [Google Scholar]
  10. Devillers C. H., Piper M. E., Ballicora M. A., Preiss J. ( 2003). Characterization of the branching patterns of glycogen branching enzyme truncated on the N-terminus. Arch Biochem Biophys 418:34–38 [View Article][PubMed]
    [Google Scholar]
  11. Eikmanns B. J., Metzger M., Reinscheid D., Kircher M., Sahm H. ( 1991). Amplification of three threonine biosynthesis genes in Corynebacterium glutamicum and its influence on carbon flux in different strains. Appl Microbiol Biotechnol 34:617–622 [View Article][PubMed]
    [Google Scholar]
  12. Eikmanns B. J., Thum-Schmitz N., Eggeling L., Lüdtke K. U., Sahm H. ( 1994). Nucleotide sequence, expression and transcriptional analysis of the Corynebacterium glutamicum gltA gene encoding citrate synthase. Microbiology 140:1817–1828 [View Article][PubMed]
    [Google Scholar]
  13. Elbein A. D., Pastuszak I., Tackett A. J., Wilson T., Pan Y. T. ( 2010). Last step in the conversion of trehalose to glycogen: a mycobacterial enzyme that transfers maltose from maltose 1-phosphate to glycogen. J Biol Chem 285:9803–9812 [View Article][PubMed]
    [Google Scholar]
  14. Garg S. K., Alam M. S., Kishan K. V., Agrawal P. ( 2007). Expression and characterization of α-(1,4)-glucan branching enzyme Rv1326c of Mycobacterium tuberculosis H37Rv. Protein Expr Purif 51:198–208 [View Article][PubMed]
    [Google Scholar]
  15. Garg S. K., Alam M. S., Bajpai R., Kishan K. R., Agrawal P. ( 2009). Redox biology of Mycobacterium tuberculosis H37Rv: protein-protein interaction between GlgB and WhiB1 involves exchange of thiol-disulfide. BMC Biochem 10:1 [View Article][PubMed]
    [Google Scholar]
  16. Hanahan D. ( 1983). Studies on transformation of Escherichia coli with plasmids. J Mol Biol 166:557–580 [View Article][PubMed]
    [Google Scholar]
  17. Hernández M. A., Alvarez H. M. ( 2010). Glycogen formation by Rhodococcus species and the effect of inhibition of lipid biosynthesis on glycogen accumulation in Rhodococcus opacus PD630. FEMS Microbiol Lett 312:93–99 [View Article][PubMed]
    [Google Scholar]
  18. Kalinowski J., Bathe B., Bartels D., Bischoff N., Bott M., Burkovski A., Dusch N., Eggeling L., Eikmanns B. J. et al. ( 2003). The complete Corynebacterium glutamicum ATCC 13032 genome sequence and its impact on the production of l-aspartate-derived amino acids and vitamins. J Biotechnol 104:5–25 [View Article][PubMed]
    [Google Scholar]
  19. Kalscheuer R., Syson K., Veeraraghavan U., Weinrick B., Biermann K. E., Liu Z., Sacchettini J. C., Besra G., Bornemann S., Jacobs W. R. Jr ( 2010). Self-poisoning of Mycobacterium tuberculosis by targeting GlgE in an alpha-glucan pathway. Nat Chem Biol 6:376–384 [View Article][PubMed]
    [Google Scholar]
  20. Kiel J. A., Boels J. M., Beldman G., Venema G. ( 1994). Glycogen in Bacillus subtilis: molecular characterization of an operon encoding enzymes involved in glycogen biosynthesis and degradation. Mol Microbiol 11:203–218 [View Article][PubMed]
    [Google Scholar]
  21. Laemmli U. K. ( 1970). Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685 [View Article][PubMed]
    [Google Scholar]
  22. Liebl W. ( 2005). Corynebacterium taxonomy. Handbook of Corynebacterium glutamicum9–34 Eggeling L., Bott M. Boca Raton, FL: CRC Press; [View Article]
    [Google Scholar]
  23. Montero M., Almagro G., Eydallin G., Viale A. M., Muñoz F. J., Bahaji A., Li J., Rahimpour M., Baroja-Fernández E., Pozueta-Romero J. ( 2011). Escherichia coli glycogen genes are organized in a single glgBXCAP transcriptional unit possessing an alternative suboperonic promoter within glgC that directs glgAP expression. Biochem J 433:107–117 [View Article][PubMed]
    [Google Scholar]
  24. Pal K., Kumar S., Sharma S., Garg S. K., Alam M. S., Xu H. E., Agrawal P., Swaminathan K. ( 2010). Crystal structure of full-length Mycobacterium tuberculosis H37Rv glycogen branching enzyme: insights of N-terminal β-sandwich in substrate specificity and enzymatic activity. J Biol Chem 285:20897–20903 [View Article][PubMed]
    [Google Scholar]
  25. Sambrook J., Russell D. W. ( 2001). Molecular Cloning: a Laboratory Manual Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  26. Schreiner M. E., Fiur D., Holátko J., Pátek M., Eikmanns B. J. ( 2005). E1 enzyme of the pyruvate dehydrogenase complex in Corynebacterium glutamicum: molecular analysis of the gene and phylogenetic aspects. J Bacteriol 187:6005–6018 [View Article][PubMed]
    [Google Scholar]
  27. Seibold G. M., Eikmanns B. J. ( 2007). The glgX gene product of Corynebacterium glutamicum is required for glycogen degradation and for fast adaptation to hyperosmotic stress. Microbiology 153:2212–2220 [View Article][PubMed]
    [Google Scholar]
  28. Seibold G., Dempf S., Schreiner J., Eikmanns B. J. ( 2007). Glycogen formation in Corynebacterium glutamicum and role of ADP-glucose pyrophosphorylase. Microbiology 153:1275–1285 [View Article][PubMed]
    [Google Scholar]
  29. Seibold G. M., Hagmann C. T., Schietzel M., Emer D., Auchter M., Schreiner J., Eikmanns B. J. ( 2010). The transcriptional regulators RamA and RamB are involved in the regulation of glycogen synthesis in Corynebacterium glutamicum . Microbiology 156:1256–1263 [View Article][PubMed]
    [Google Scholar]
  30. Sheng F., Jia X., Yep A., Preiss J., Geiger J. H. ( 2009). The crystal structures of the open and catalytically competent closed conformation of Escherichia coli glycogen synthase. J Biol Chem 284:17796–17807 [View Article][PubMed]
    [Google Scholar]
  31. Stäbler N., Oikawa T., Bott M., Eggeling L. ( 2011). Corynebacterium glutamicum as a host for synthesis and export of d-amino acids. J Bacteriol 193:1702–1709 [View Article][PubMed]
    [Google Scholar]
  32. Studier F. W., Moffatt B. A. ( 1986). Use of bacteriophage T7 RNA polymerase to direct selective high-level expression of cloned genes. J Mol Biol 189:113–130 [View Article][PubMed]
    [Google Scholar]
  33. Tauch A., Kirchner O., Löffler B., Götker S., Pühler A., Kalinowski J. ( 2002). Efficient electrotransformation of Corynebacterium diphtheriae with a mini-replicon derived from the Corynebacterium glutamicum plasmid pGA1. Curr Microbiol 45:362–367 [View Article][PubMed]
    [Google Scholar]
  34. Tzvetkov M., Klopprogge C., Zelder O., Liebl W. ( 2003). Genetic dissection of trehalose biosynthesis in Corynebacterium glutamicum: inactivation of trehalose production leads to impaired growth and an altered cell wall lipid composition. Microbiology 149:1659–1673 [View Article][PubMed]
    [Google Scholar]
  35. Ugalde J. E., Lepek V., Uttaro A., Estrella J., Iglesias A., Ugalde R. A. ( 1998). Gene organization and transcription analysis of the Agrobacterium tumefaciens glycogen (glg) operon: two transcripts for the single phosphoglucomutase gene. J Bacteriol 180:6557–6564[PubMed]
    [Google Scholar]
  36. Utsumi Y., Yoshida M., Francisco P. B. Jr, Sawada T., Kitamura S., Nakamura Y. ( 2009). Quantitative assay method for starch branching enzyme with bicinchoninic acid by measuring the reducing terminals of glucose. J Appl Glycosci 56:215–222 [View Article]
    [Google Scholar]
  37. Vasicová P., Abrhamova Z., Nesvera J., Patek M., Sahm H., Eikmanns B. J. ( 1998). Integrative and autonomously replicating vectors for analysis of promoters in Corynebacterium glutamicum . Biotechnol Tech 12:743–746 [View Article]
    [Google Scholar]
  38. Wendisch V. F., Bott M., Eikmanns B. J. ( 2006). Metabolic engineering of Escherichia coli and Corynebacterium glutamicum for biotechnological production of organic acids and amino acids. Curr Opin Microbiol 9:268–274 [View Article][PubMed]
    [Google Scholar]
  39. Wolf A., Krämer R., Morbach S. ( 2003). Three pathways for trehalose metabolism in Corynebacterium glutamicum ATCC13032 and their significance in response to osmotic stress. Mol Microbiol 49:1119–1134 [View Article][PubMed]
    [Google Scholar]
  40. Woo H. M., Noack S., Seibold G. M., Willbold S., Eikmanns B. J., Bott M. ( 2010). Link between phosphate starvation and glycogen metabolism in Corynebacterium glutamicum, revealed by metabolomics. Appl Environ Microbiol 76:6910–6919 [View Article][PubMed]
    [Google Scholar]
  41. Zuker M. ( 2003). Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Res 31:3406–3415 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.051565-0
Loading
/content/journal/micro/10.1099/mic.0.051565-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error