1887

Abstract

Gram-positive bacteria of the genus possess linear chromosomes and linear plasmids capped by terminal proteins covalently bound to the 5′ ends of the DNA. The linearity of chromosomes raises the question of how they are transferred during conjugation, particularly when the mobilizing plasmids are also linear. The classical rolling circle replication model for transfer of circular plasmids and chromosomes from an internal origin cannot be applied to this situation. Instead it has been proposed that linear plasmids mobilize themselves and the linear chromosomes from their telomeres using terminal-protein-primed DNA synthesis. In support of this ‘end first’ model, we found that artificially circularized chromosomes could not be mobilized by linear plasmids (SLP2 and SCP1), while linear chromosomes could. In comparison, a circular plasmid (pIJ303) could mobilize both circular and linear chromosomes at the same efficiencies. Interestingly, artificially circularized SLP2 exhibited partial self-transfer capability, indicating that, being a composite replicon, it may have acquired the additional internal origin of transfer from an ancestral circular plasmid during evolution.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.051441-0
2011-09-01
2020-01-23
Loading full text...

Full text loading...

/deliver/fulltext/micro/157/9/2556.html?itemId=/content/journal/micro/10.1099/mic.0.051441-0&mimeType=html&fmt=ahah

References

  1. Bao K., Cohen S. N.. ( 2001;). Terminal proteins essential for the replication of linear plasmids and chromosomes in Streptomyces . Genes Dev15:1518–1527 [CrossRef][PubMed]
    [Google Scholar]
  2. Bath J., Wu L. J., Errington J., Wang J. C.. ( 2000;). Role of Bacillus subtilis SpoIIIE in DNA transport across the mother cell–prespore division septum. Science290:995–997 [CrossRef][PubMed]
    [Google Scholar]
  3. Bentley S. D., Brown S., Murphy L. D., Harris D. E., Quail M. A., Parkhill J., Barrell B. G., McCormick J. R., Santamaria R. I. et al. ( 2004;). SCP1, a 356,023 bp linear plasmid adapted to the ecology and developmental biology of its host, Streptomyces coelicolor A3(2). Mol Microbiol51:1615–1628 [CrossRef][PubMed]
    [Google Scholar]
  4. Bibb M. J., Ward J. M., Hopwood D. A.. ( 1978;). Transformation of plasmid DNA into Streptomyces at high frequency. Nature274:398–400 [CrossRef][PubMed]
    [Google Scholar]
  5. Bigot S., Sivanathan V., Possoz C., Barre F. X., Cornet F.. ( 2007;). FtsK, a literate chromosome segregation machine. Mol Microbiol64:1434–1441 [CrossRef][PubMed]
    [Google Scholar]
  6. Boccard F., Smokvina T., Pernodet J. L., Friedmann A., Guérineau M.. ( 1989;). The integrated conjugative plasmid pSAM2 of Streptomyces ambofaciens is related to temperate bacteriophages. EMBO J8:973–980[PubMed]
    [Google Scholar]
  7. Burton B., Dubnau D.. ( 2010;). Membrane-associated DNA transport machines. Cold Spring Harb Perspect Biol2:a000406 [CrossRef][PubMed]
    [Google Scholar]
  8. Burton B. M., Marquis K. A., Sullivan N. L., Rapoport T. A., Rudner D. Z.. ( 2007;). The ATPase SpoIIIE transports DNA across fused septal membranes during sporulation in Bacillus subtilis . Cell131:1301–1312 [CrossRef][PubMed]
    [Google Scholar]
  9. Byrd D. R., Matson S. W.. ( 1997;). Nicking by transesterification: the reaction catalysed by a relaxase. Mol Microbiol25:1011–1022 [CrossRef][PubMed]
    [Google Scholar]
  10. Cascales E., Christie P. J.. ( 2003;). The versatile bacterial type IV secretion systems. Nat Rev Microbiol1:137–149 [CrossRef][PubMed]
    [Google Scholar]
  11. Chaconas G., Chen C. W.. ( 2005;). Linear chromosomes in bacteria: no longer going around in circles. The Bacterial Chromosome525–539 Higgins N. P.. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  12. Chen C. W.. ( 1996;). Complications and implications of linear bacterial chromosomes. Trends Genet12:192–196 [CrossRef][PubMed]
    [Google Scholar]
  13. Chen C. W.. ( 2007;). Streptomyces linear plasmids: replication and telomeres. Microbial Linear Plasmids33–61 Meinhardt F., Klassen R.. Berlin & Heidelberg: Springer-Verlag; [CrossRef]
    [Google Scholar]
  14. Chen C. W., Yu T.-W., Lin Y. S., Kieser H. M., Hopwood D. A.. ( 1993;). The conjugative plasmid SLP2 of Streptomyces lividans is a 50 kb linear molecule. Mol Microbiol7:925–932 [CrossRef][PubMed]
    [Google Scholar]
  15. Chen C. W., Huang C.-H., Lee H.-H., Tsai H.-H., Kirby R.. ( 2002;). Once the circle has been broken: dynamics and evolution of Streptomyces chromosomes. Trends Genet18:522–529 [CrossRef][PubMed]
    [Google Scholar]
  16. Clewell D. B.. ( 1993;). Bacterial Conjugation New York: Plenum Press;[CrossRef]
    [Google Scholar]
  17. Denapaite D., Cullum J.. ( 1998;). Chromosome end of Streptomyces lividans 66 is necessary for the maintenance of the linear plasmid SLP2. In Society for General Microbiology 141st Ordinary Meeting, p. 47.. University of East Anglia; Norwich, UK:
    [Google Scholar]
  18. Ducote M. J., Prakash S., Pettis G. S.. ( 2000;). Minimal and contributing sequence determinants of the cis-acting locus of transfer (clt) of streptomycete plasmid pIJ101 occur within an intrinsically curved plasmid region. J Bacteriol182:6834–6841 [CrossRef][PubMed]
    [Google Scholar]
  19. Grohmann E., Muth G., Espinosa M.. ( 2003;). Conjugative plasmid transfer in Gram-positive bacteria. Microbiol Mol Biol Rev67:277–301 [CrossRef][PubMed]
    [Google Scholar]
  20. Hanafusa T., Kinashi H.. ( 1992;). The structure of an integrated copy of the giant linear plasmid SCP1 in the chromosome of Streptomyces coelicolor 2612. Mol Gen Genet231:363–368 [CrossRef][PubMed]
    [Google Scholar]
  21. Hopwood D. A., Kieser T.. ( 1993;). Conjugative plasmids of Streptomyces . Bacterial Conjugation293–311 Clewell D. B.. New York: Plenum Press;
    [Google Scholar]
  22. Hopwood D. A., Sermonti G.. ( 1963;). The genetics of Streptomyces coelicolor . Adv Genet11:273–342 [CrossRef]
    [Google Scholar]
  23. Hopwood D. A., Harold R. J., Vivian A., Ferguson H. M.. ( 1969;). A new kind of fertility variant in Streptomyces coelicolor . Genetics62:461–477[PubMed]
    [Google Scholar]
  24. Hopwood D. A., Kieser T., Wright H. M., Bibb M. J.. ( 1983;). Plasmids, recombination and chromosome mapping in Streptomyces lividans 66. J Gen Microbiol129:2257–2269[PubMed]
    [Google Scholar]
  25. Hopwood D. A., Lydiate D. J., Malpartida F., Wright H. M.. ( 1984;). Conjugative sex plasmids of Streptomyces . Plasmids in Bacteria615–634 Helinski D., Cohen S., Clewell D.. New York: Plenum;
    [Google Scholar]
  26. Hsu C. C., Chen C. W.. ( 2010;). Linear plasmid SLP2 is maintained by partitioning, intrahyphal spread, and conjugal transfer in Streptomyces . J Bacteriol192:307–315 [CrossRef][PubMed]
    [Google Scholar]
  27. Hsueh K.-W.. ( 2009;). Identification of a cis-acting element on Streptomyces linear plasmid SLP2 for conjugal transfer. MSc thesis, Department of Biotechnology, National Taipei University of Technology..
  28. Huang C.-H., Lin Y.-S., Yang Y.-L., Huang S. W., Chen C. W.. ( 1998;). The telomeres of Streptomyces chromosomes contain conserved palindromic sequences with potential to form complex secondary structures. Mol Microbiol28:905–916 [CrossRef][PubMed]
    [Google Scholar]
  29. Huang C. H., Chen C. Y., Tsai H. H., Chen C., Lin Y. S., Chen C. W.. ( 2003;). Linear plasmid SLP2 of Streptomyces lividans is a composite replicon. Mol Microbiol47:1563–1576 [CrossRef][PubMed]
    [Google Scholar]
  30. Kataoka M., Kiyose Y. M., Michisuji Y., Horiguchi T., Seki T., Yoshida T.. ( 1994;). Complete nucleotide sequence of the Streptomyces nigrifaciens plasmid, pSN22: genetic organization and correlation with genetic properties. Plasmid32:55–69 [CrossRef][PubMed]
    [Google Scholar]
  31. Kieser T., Hopwood D. A., Wright H. M., Thompson C. J.. ( 1982;). pIJ101, a multi-copy broad host-range Streptomyces plasmid: functional analysis and development of DNA cloning vectors. Mol Gen Genet185:223–238 [CrossRef][PubMed]
    [Google Scholar]
  32. Kieser T., Bibb M., Buttner M. J., Chater K. F., Hopwood D. A.. ( 2000;). Practical Streptomyces Genetics Norwich: The John Innes Foundation;
    [Google Scholar]
  33. Kinashi H., Shimaji M., Sakai A.. ( 1987;). Giant linear plasmids in Streptomyces which code for antibiotic biosynthesis genes. Nature328:454–456 [CrossRef][PubMed]
    [Google Scholar]
  34. Kinashi H., Shimaji-Murayama M., Hanafusa T.. ( 1992;). Integration of SCP1, a giant linear plasmid, into the Streptomyces coelicolor chromosome. Gene115:35–41 [CrossRef][PubMed]
    [Google Scholar]
  35. Kirby R., Chen C. W.. ( 2011;). Genome architecture. Streptomyces: Molecular Biology and Biotechnology5–26 Dyson P.. Norfolk, UK: Caister Academic Press;
    [Google Scholar]
  36. Lai C.-H.. ( 2010;). Function of the nuclear localization signals of Streptomyces terminal proteins in plants. MSc thesis, Department of Life Sciences and Institute of Genome Sciences, National Yang-Ming University..
  37. Levene S. D., Zimm B. H.. ( 1987;). Separations of open-circular DNA using pulsed-field electrophoresis. Proc Natl Acad Sci U S A84:4054–4057 [CrossRef][PubMed]
    [Google Scholar]
  38. Lin Y.-L.. ( 1998;). Involvement of the terminal sequence of the Streptomyces chromosome in the maintenance of linear plasmids. MSc thesis, Institute of Genetics, National Yang-Ming University..
  39. Lin Y.-S., Chen C. W.. ( 1997;). Instability of artificially circularized chromosomes of Streptomyces lividans . Mol Microbiol26:709–719 [CrossRef][PubMed]
    [Google Scholar]
  40. Lin Y.-S., Kieser H. M., Hopwood D. A., Chen C. W.. ( 1993;). The chromosomal DNA of Streptomyces lividans 66 is linear. Mol Microbiol10:923–933 [CrossRef][PubMed]
    [Google Scholar]
  41. Liu H., Naismith J. H., Hay R. T.. ( 2003;). Adenovirus DNA replication. Curr Top Microbiol Immunol272:131–164[PubMed]
    [Google Scholar]
  42. Massey T. H., Mercogliano C. P., Yates J., Sherratt D. J., Löwe J.. ( 2006;). Double-stranded DNA translocation: structure and mechanism of hexameric FtsK. Mol Cell23:457–469 [CrossRef][PubMed]
    [Google Scholar]
  43. Meijer W. J., Horcajadas J. A., Salas M.. ( 2001;). ϕ29 family of phages. Microbiol Mol Biol Rev65:261–287 [CrossRef][PubMed]
    [Google Scholar]
  44. Pease P. J., Levy O., Cost G. J., Gore J., Ptacin J. L., Sherratt D., Bustamante C., Cozzarelli N. R.. ( 2005;). Sequence-directed DNA translocation by purified FtsK. Science307:586–590 [CrossRef][PubMed]
    [Google Scholar]
  45. Pettis G. S., Cohen S. N.. ( 1994;). Transfer of the plJ101 plasmid in Streptomyces lividans requires a cis-acting function dispensable for chromosomal gene transfer. Mol Microbiol13:955–964 [CrossRef][PubMed]
    [Google Scholar]
  46. Pettis G. S., Prakash S.. ( 1999;). Complementation of conjugation functions of Streptomyces lividans plasmid pIJ101 by the related Streptomyces plasmid pSB24.2. J Bacteriol181:4680–4685[PubMed]
    [Google Scholar]
  47. Possoz C., Ribard C., Gagnat J., Pernodet J. L., Guérineau M.. ( 2001;). The integrative element pSAM2 from Streptomyces: kinetics and mode of conjugal transfer. Mol Microbiol42:159–166 [CrossRef][PubMed]
    [Google Scholar]
  48. Qin Z., Cohen S. N.. ( 1998;). Replication at the telomeres of the Streptomyces linear plasmid pSLA2. Mol Microbiol28:893–903 [CrossRef][PubMed]
    [Google Scholar]
  49. Ray T., Mills A., Dyson P.. ( 1995;). Tris-dependent oxidative DNA strand scission during electrophoresis. Electrophoresis16:888–894 [CrossRef][PubMed]
    [Google Scholar]
  50. Redenbach M., Flett F., Piendl W., Glocker I., Rauland U., Wafzig O., Kliem R., Leblond P., Cullum J.. ( 1993;). The Streptomyces lividans 66 chromosome contains a 1 Mb deletogenic region flanked by two amplifiable regions. Mol Gen Genet241:255–262 [CrossRef][PubMed]
    [Google Scholar]
  51. Reuther J., Gekeler C., Tiffert Y., Wohlleben W., Muth G.. ( 2006a;). Unique conjugation mechanism in mycelial streptomycetes: a DNA-binding ATPase translocates unprocessed plasmid DNA at the hyphal tip. Mol Microbiol61:436–446 [CrossRef][PubMed]
    [Google Scholar]
  52. Reuther J., Wohlleben W., Muth G.. ( 2006b;). Modular architecture of the conjugative plasmid pSVH1 from Streptomyces venezuelae . Plasmid55:201–209 [CrossRef][PubMed]
    [Google Scholar]
  53. Sambrook J., MacCallum P., Russell D.. ( 2001;). Molecular Cloning: a Laboratory Manual, 3rd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  54. Servín-González L.. ( 1996;). Identification and properties of a novel clt locus in the Streptomyces phaeochromogenes plasmid pJV1. J Bacteriol178:4323–4326[PubMed]
    [Google Scholar]
  55. Sobral B. W., Atherly A. G.. ( 1989;). Pulse time and agarose concentration affect the electrophoretic mobility of cccDNA during PFGE and FIGE. Nucleic Acids Res17:7359–7369 [CrossRef][PubMed]
    [Google Scholar]
  56. Tiffert Y., Götz B., Reuther J., Wohlleben W., Muth G.. ( 2007;). Conjugative DNA transfer in Streptomyces: SpdB2 involved in the intramycelial spreading of plasmid pSVH1 is an oligomeric integral membrane protein that binds to dsDNA. Microbiology153:2976–2983 [CrossRef][PubMed]
    [Google Scholar]
  57. Tinland B., Koukolíková-Nicola Z., Hall M. N., Hohn B.. ( 1992;). The T-DNA-linked VirD2 protein contains two distinct functional nuclear localization signals. Proc Natl Acad Sci U S A89:7442–7446 [CrossRef][PubMed]
    [Google Scholar]
  58. Tsai J. F.-Y., Chen C. W.. ( 1987;). Isolation and characterization of Streptomyces lividans mutants deficient in intraplasmid recombination. Mol Gen Genet208:211–218 [CrossRef][PubMed]
    [Google Scholar]
  59. Tsai H.-H., Huang C.-H., Lin A. M., Chen C. W.. ( 2008;). Terminal proteins of Streptomyces chromosome can target DNA into eukaryotic nuclei. Nucleic Acids Res36:e62 [CrossRef][PubMed]
    [Google Scholar]
  60. Tsai H.-H., Huang C.-H., Tessmer I., Erie D. A., Chen C. W.. ( 2011;). Linear Streptomyces plasmids form superhelical circles through interactions between their terminal proteins. Nucleic Acids Res39:2165–2174 [CrossRef][PubMed]
    [Google Scholar]
  61. Vivian A., Hopwood D. A.. ( 1973;). Genetic control of fertility in Streptomyces coelicolor A3(2): new kinds of donor strains. J Gen Microbiol76:147–162[CrossRef]
    [Google Scholar]
  62. Vogelmann J., Ammelburg M., Finger C., Guezguez J., Linke D., Flötenmeyer M., Stierhof Y.-D., Wohlleben W., Muth G.. ( 2011a;). Conjugal plasmid transfer in Streptomyces resembles bacterial chromosome segregation by FtsK/SpoIIIE. EMBO J30:2246–2254 [CrossRef][PubMed]
    [Google Scholar]
  63. Vogelmann J., Wohlleben W., Muth G.. ( 2011b;). Streptomyces conjugative genetic elements. Streptomyces: Molecular Biology and Biotechnology27–42 Dyson P.. Norfolk, UK: Caister Academic Press;
    [Google Scholar]
  64. Wang J., Pettis G. S.. ( 2010;). The tra locus of streptomycete plasmid pIJ101 mediates efficient transfer of a circular but not a linear version of the same replicon. Microbiology156:2723–2733 [CrossRef][PubMed]
    [Google Scholar]
  65. Wang S.-J., Chang H.-M., Lin Y.-S., Huang C.-H., Chen C. W.. ( 1999;). Streptomyces genomes: circular genetic maps from the linear chromosomes. Microbiology145:2209–2220[PubMed]
    [Google Scholar]
  66. Xu M.-X., Zhu Y.-M., Shen M.-J., Jiang W.-H., Zhao G.-P., Qin Z.-J.. ( 2006;). Characterization of the essential gene components for conjugal transfer of Streptomyces lividans linear plasmid SLP2. Progress in Biochemistry and Biophysics33:986–993
    [Google Scholar]
  67. Yamasaki M., Redenbach M., Kinashi H.. ( 2001;). Integrated structures of the linear plasmid SCP1 in two bidirectional donor strains of Streptomyces coelicolor A3(2). Mol Gen Genet264:634–642 [CrossRef][PubMed]
    [Google Scholar]
  68. Yang C.-C., Huang C.-H., Li C.-Y., Tsay Y.-G., Lee S.-C., Chen C. W.. ( 2002;). The terminal proteins of linear Streptomyces chromosomes and plasmids: a novel class of replication priming proteins. Mol Microbiol43:297–305 [CrossRef][PubMed]
    [Google Scholar]
  69. Zhong L., Cheng Q., Tian X., Zhao L., Qin Z.. ( 2010;). Characterization of the replication, transfer, and plasmid/lytic phage cycle of the Streptomyces plasmid-phage pZL12. J Bacteriol192:3747–3754 [CrossRef][PubMed]
    [Google Scholar]
  70. Zhou X., Deng Z., Firmin J. L., Hopwood D. A., Kieser T.. ( 1988;). Site-specific degradation of Streptomyces lividans DNA during electrophoresis in buffers contaminated with ferrous iron. Nucleic Acids Res16:4341–4352[CrossRef]
    [Google Scholar]
  71. Zhou X., He X., Liang J., Li A., Xu T., Kieser T., Helmann J. D., Deng Z.. ( 2005;). A novel DNA modification by sulphur. Mol Microbiol57:1428–1438 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.051441-0
Loading
/content/journal/micro/10.1099/mic.0.051441-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error