1887

Abstract

The human pathogen harbours many genes encoding phosphotransferase systems and sugar ABC (ATP-binding cassette) transporters, including systems for the utilization of the β-glucoside sugar cellobiose. In this study, we show that the transcriptional regulator CelR, which has previously been found to be important for pneumococcal virulence, activates the expression of the cellobiose-utilization gene cluster ( locus) of . Expression directed by the two promoters present in the locus was increased in the presence of cellobiose as sole carbon source in the medium, while expression decreased in the presence of glucose in the medium. Furthermore, we have predicted a 22 bp putative CelR regulatory site (5′-YTTTCCWTAWCAWTWAGGAAAA-3′) in the promoters of and , and analysis showed that it is highly conserved in other pathogenic streptococci as well. Promoter truncations of and , where the half or full CelR regulatory site was deleted, confirmed that the CelR-binding site in P and P is functional. Transcriptome studies with the mutant and in prediction of the CelR regulatory site in the entire D39 genome sequence show that the locus is the only cluster of genes under the direct control of CelR. Therefore, CelR is a regulator dedicated to the cellobiose-dependent transcriptional activation of the locus.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.051359-0
2011-10-01
2020-06-05
Loading full text...

Full text loading...

/deliver/fulltext/micro/157/10/2854.html?itemId=/content/journal/micro/10.1099/mic.0.051359-0&mimeType=html&fmt=ahah

References

  1. Bailey T. L., Elkan C.. ( 1994;). Fitting a mixture model by expectation maximization to discover motifs in biopolymers. Proc Int Conf Intell Syst Mol Biol2:28–36[PubMed]
    [Google Scholar]
  2. Bogaert D., De Groot R., Hermans P. W.. ( 2004;). Streptococcus pneumoniae colonisation: the key to pneumococcal disease. Lancet Infect Dis4:144–154 [CrossRef][PubMed]
    [Google Scholar]
  3. Brown S. A., Palmer K. L., Whiteley M.. ( 2008;). Revisiting the host as a growth medium. Nat Rev Microbiol6:657–666 [CrossRef][PubMed]
    [Google Scholar]
  4. Deutscher J., Francke C., Postma P. W.. ( 2006;). How phosphotransferase system-related protein phosphorylation regulates carbohydrate metabolism in bacteria. Microbiol Mol Biol Rev70:939–1031 [CrossRef][PubMed]
    [Google Scholar]
  5. Halfmann A., Hakenbeck R., Brückner R.. ( 2007;). A new integrative reporter plasmid for Streptococcus pneumoniae . FEMS Microbiol Lett268:217–224 [CrossRef][PubMed]
    [Google Scholar]
  6. Hava D. L., Camilli A.. ( 2002;). Large-scale identification of serotype 4 Streptococcus pneumoniae virulence factors. Mol Microbiol45:1389–1406[PubMed]
    [Google Scholar]
  7. Kadioglu A., Weiser J. N., Paton J. C., Andrew P. W.. ( 2008;). The role of Streptococcus pneumoniae virulence factors in host respiratory colonization and disease. Nat Rev Microbiol6:288–301 [CrossRef][PubMed]
    [Google Scholar]
  8. Keyhani N. O., Roseman S.. ( 1997;). Wild-type Escherichia coli grows on the chitin disaccharide, N,N′-diacetylchitobiose, by expressing the cel operon. Proc Natl Acad Sci U S A94:14367–14371 [CrossRef][PubMed]
    [Google Scholar]
  9. Kiliç A. O., Tao L., Zhang Y., Lei Y., Khammanivong A., Herzberg M. C.. ( 2004;). Involvement of Streptococcus gordonii beta-glucoside metabolism systems in adhesion, biofilm formation, and in vivo gene expression. J Bacteriol186:4246–4253 [CrossRef][PubMed]
    [Google Scholar]
  10. King S. J.. ( 2010;). Pneumococcal modification of host sugars: a major contributor to colonization of the human airway?. Mol Oral Microbiol25:15–24 [CrossRef][PubMed]
    [Google Scholar]
  11. Kloosterman T. G., Bijlsma J. J. E., Kok J., Kuipers O. P.. ( 2006a;). To have neighbour’s fare: extending the molecular toolbox for Streptococcus pneumoniae . Microbiology152:351–359 [CrossRef][PubMed]
    [Google Scholar]
  12. Kloosterman T. G., Hendriksen W. T., Bijlsma J. J., Bootsma H. J., van Hijum S. A., Kok J., Hermans P. W., Kuipers O. P.. ( 2006b;). Regulation of glutamine and glutamate metabolism by GlnR and GlnA in Streptococcus pneumoniae . . J Biol Chem281:25097–25109 [CrossRef][PubMed]
    [Google Scholar]
  13. Lanie J. A., Ng W. L., Kazmierczak K. M., Andrzejewski T. M., Davidsen T. M., Wayne K. J., Tettelin H., Glass J. I., Winkler M. E.. ( 2007;). Genome sequence of Avery’s virulent serotype 2 strain D39 of Streptococcus pneumoniae and comparison with that of unencapsulated laboratory strain R6. J Bacteriol189:38–51 [CrossRef][PubMed]
    [Google Scholar]
  14. Lau G. W., Haataja S., Lonetto M., Kensit S. E., Marra A., Bryant A. P., McDevitt D., Morrison D. A., Holden D. W.. ( 2001;). A functional genomic analysis of type 3 Streptococcus pneumoniae virulence. Mol Microbiol40:555–571 [CrossRef][PubMed]
    [Google Scholar]
  15. Leenhouts K., Buist G., Bolhuis A., ten Berge A., Kiel J., Mierau I., Dabrowska M., Venema G., Kok J.. ( 1996;). A general system for generating unlabelled gene replacements in bacterial chromosomes. Mol Gen Genet253:217–224[CrossRef]
    [Google Scholar]
  16. Li S., Kelly S. J., Lamani E., Ferraroni M., Jedrzejas M. J.. ( 2000;). Structural basis of hyaluronan degradation by Streptococcus pneumoniae hyaluronate lyase. EMBO J19:1228–1240 [CrossRef][PubMed]
    [Google Scholar]
  17. Long A. D., Mangalam H. J., Chan B. Y., Tolleri L., Hatfield G. W., Baldi P.. ( 2001;). Improved statistical inference from DNA microarray data using analysis of variance and a Bayesian statistical framework. Analysis of global gene expression in Escherichia coli K12. J Biol Chem276:19937–19944 [CrossRef][PubMed]
    [Google Scholar]
  18. Lulko A. T., Buist G., Kok J., Kuipers O. P.. ( 2007;). Transcriptome analysis of temporal regulation of carbon metabolism by CcpA in Bacillus subtilis reveals additional target genes. J Mol Microbiol Biotechnol12:82–95 [CrossRef][PubMed]
    [Google Scholar]
  19. McKessar S. J., Hakenbeck R.. ( 2007;). The two-component regulatory system TCS08 is involved in cellobiose metabolism of Streptococcus pneumoniae R6. J Bacteriol189:1342–1350 [CrossRef][PubMed]
    [Google Scholar]
  20. Mitchell T. J.. ( 2003;). The pathogenesis of streptococcal infections: from tooth decay to meningitis. Nat Rev Microbiol1:219–230 [CrossRef][PubMed]
    [Google Scholar]
  21. Obaro S., Adegbola R.. ( 2002;). The pneumococcus: carriage, disease and conjugate vaccines. J Med Microbiol51:98–104[PubMed]
    [Google Scholar]
  22. Old L. A., Lowes S., Russell R. R.. ( 2006;). Genomic variation in Streptococcus mutans: deletions affecting the multiple pathways of β-glucoside metabolism. Oral Microbiol Immunol21:21–27 [CrossRef][PubMed]
    [Google Scholar]
  23. Scott J. E., Heatley F.. ( 1999;). Hyaluronan forms specific stable tertiary structures in aqueous solution: a 13C NMR study. Proc Natl Acad Sci U S A96:4850–4855 [CrossRef][PubMed]
    [Google Scholar]
  24. Shafeeq S., Kloosterman T. G., Kuipers O. P.. ( 2011a;). Transcriptional response of Streptococcus pneumoniae to Zn2+ limitation and the repressor/activator function of AdcR. Metallomics3:609–618 [CrossRef][PubMed]
    [Google Scholar]
  25. Shafeeq S., Yesilkaya H., Kloosterman T. G., Narayanan G., Andrew P. W., Kuipers O. P., Morrissey J. A.. ( 2011b;). The cop operon is required for copper homeostasis and contributes to virulence in Streptococcus pneumoniae . Mol Microbiol [CrossRef]
    [Google Scholar]
  26. Shelburne S. A., Davenport M. T., Keith D. B., Musser J. M.. ( 2008;). The role of complex carbohydrate catabolism in the pathogenesis of invasive streptococci. Trends Microbiol16:318–325 [CrossRef][PubMed]
    [Google Scholar]
  27. Song X. M., Connor W., Hokamp K., Babiuk L. A., Potter A. A.. ( 2009;). The growth phase-dependent regulation of the pilus locus genes by two-component system TCS08 in Streptococcus pneumoniae . Microb Pathog46:28–35 [CrossRef][PubMed]
    [Google Scholar]
  28. Terzaghi B. E., Sandine W. E.. ( 1975;). Improved medium for lactic streptococci and their bacteriophages. Appl Microbiol29:807–813[PubMed]
    [Google Scholar]
  29. Throup J. P., Koretke K. K., Bryant A. P., Ingraham K. A., Chalker A. F., Ge Y., Marra A., Wallis N. G., Brown J. R. et al. ( 2000;). A genomic analysis of two-component signal transduction in Streptococcus pneumoniae . Mol Microbiol35:566–576 [CrossRef][PubMed]
    [Google Scholar]
  30. van Hijum S. A. F. T., García de la Nava J., Trelles O., Kok J., Kuipers O. P.. ( 2003;). MicroPreP: a cDNA microarray data pre-processing framework. Appl Bioinformatics2:241–244[PubMed]
    [Google Scholar]
  31. van Tilbeurgh H., Declerck N.. ( 2001;). Structural insights into the regulation of bacterial signalling proteins containing PRDs. Curr Opin Struct Biol11:685–693 [CrossRef][PubMed]
    [Google Scholar]
  32. Zeng L., Burne R. A.. ( 2009;). Transcriptional regulation of the cellobiose operon of Streptococcus mutans . J Bacteriol191:2153–2162 [CrossRef][PubMed]
    [Google Scholar]
  33. Zomer A. L., Buist G., Larsen R., Kok J., Kuipers O. P.. ( 2007;). Time-resolved determination of the CcpA regulon of Lactococcus lactis subsp. cremoris MG1363. J Bacteriol189:1366–1381 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.051359-0
Loading
/content/journal/micro/10.1099/mic.0.051359-0
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error