1887

Abstract

Syntrophic growth involves the oxidation of organic compounds and subsequent transfer of electrons to an H- or formate-consuming micro-organism. In order to identify genes involved specifically in syntrophic growth, a mutant library of G20 was screened for loss of the ability to grow syntrophically with JF-1. A collection of 20 mutants with an impaired ability to grow syntrophically was obtained. All 20 mutants grew in pure culture on lactate under sulfidogenic conditions at a rate and to a maximum OD similar to those of the parental strain. The largest number of mutations that affected syntrophic growth with lactate was in genes encoding proteins involved in H oxidation, electron transfer, hydrogenase post-translational modification, pyruvate degradation and signal transduction. The gene, encoding a quinone reductase complex (Qrc), and , encoding the periplasmic tetrahaem cytochrome (TpIc), were required by G20 to grow syntrophically with lactate. A mutant in the gene, encoding an Fe-only hydrogenase (Hyd), is also impaired in syntrophic growth with lactate. The other mutants grew more slowly than the parental strain in syntrophic culture with JF-1. and were shown previously to be required for growth of G20 pure cultures with H and sulfate. Washed cells of the parental strain produced H from either lactate or pyruvate, but washed cells of , and mutants produced H at rates similar to the parental strain from pyruvate and did not produce significant amounts of H from lactate. Real-time quantitative PCR assays showed increases in expression of the above three genes during syntrophic growth compared with pure-culture growth with lactate and sulfate. Our work shows that Hyd, Qrc and TpIc are involved in H production during syntrophic lactate metabolism by G20 and emphasizes the importance of H production for syntrophic lactate metabolism in this strain.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.051284-0
2011-10-01
2019-12-11
Loading full text...

Full text loading...

/deliver/fulltext/micro/157/10/2912.html?itemId=/content/journal/micro/10.1099/mic.0.051284-0&mimeType=html&fmt=ahah

References

  1. Agrawal A. G., Voordouw G., Gärtner W.. ( 2006;). Sequential and structural analysis of [NiFe]-hydrogenase-maturation proteins from Desulfovibrio vulgaris Miyazaki F. . Antonie van Leeuwenhoek 90:, 281–290. [CrossRef][PubMed]
    [Google Scholar]
  2. Bryant M. P., Wolin E. A., Wolin M. J., Wolfe R. S.. ( 1967;). Methanobacillus omelianskii, a symbiotic association of two species of bacteria. . Arch Mikrobiol 59:, 20–31. [CrossRef][PubMed]
    [Google Scholar]
  3. Bryant M. P., Campbell L. L., Reddy C. A., Crabill M. R.. ( 1977;). Growth of Desulfovibrio in lactate or ethanol media low in sulfate in association with H2-utilizing methanogenic bacteria. . Appl Environ Microbiol 33:, 1162–1169.[PubMed]
    [Google Scholar]
  4. Caffrey S. M., Park H. S., Voordouw J. K., He Z., Zhou J., Voordouw G.. ( 2007;). Function of periplasmic hydrogenases in the sulfate-reducing bacterium Desulfovibrio vulgaris Hildenborough. . J Bacteriol 189:, 6159–6167. [CrossRef][PubMed]
    [Google Scholar]
  5. Das S., Noe J. C., Paik S., Kitten T.. ( 2005;). An improved arbitrary primed PCR method for rapid characterization of transposon insertion sites. . J Microbiol Methods 63:, 89–94. [CrossRef][PubMed]
    [Google Scholar]
  6. Elbehti A., Brasseur G., Lemesle-Meunier D.. ( 2000;). First evidence for existence of an uphill electron transfer through the bc1 and NADH-Q oxidoreductase complexes of the acidophilic obligate chemolithotrophic ferrous ion-oxidizing bacterium Thiobacillus ferrooxidans. . J Bacteriol 182:, 3602–3606. [CrossRef][PubMed]
    [Google Scholar]
  7. Fontecilla-Camps J. C., Volbeda A., Cavazza C., Nicolet Y.. ( 2007;). Structure/function relationships of [NiFe]- and [FeFe]-hydrogenases. . Chem Rev 107:, 4273–4303. [CrossRef][PubMed]
    [Google Scholar]
  8. Groh J. L., Luo Q., Ballard J. D., Krumholz L. R.. ( 2005;). A method adapting microarray technology for signature-tagged mutagenesis of Desulfovibrio desulfuricans G20 and Shewanella oneidensis MR-1 in anaerobic sediment survival experiments. . Appl Environ Microbiol 71:, 7064–7074. [CrossRef][PubMed]
    [Google Scholar]
  9. Heidelberg J. F., Seshadri R., Haveman S. A., Hemme C. L., Paulsen I. T., Kolonay J. F., Eisen J. A., Ward N., Methe B. et al. & other authors ( 2004;). The genome sequence of the anaerobic, sulfate-reducing bacterium Desulfovibrio vulgaris Hildenborough. . Nat Biotechnol 22:, 554–559. [CrossRef][PubMed]
    [Google Scholar]
  10. Kotlyar A. B., Borovok N.. ( 2002;). NADH oxidation and NAD+ reduction catalysed by tightly coupled inside-out vesicles from Paracoccus denitrificans. . Eur J Biochem 269:, 4020–4024. [CrossRef][PubMed]
    [Google Scholar]
  11. LeGall J., Fauque G.. ( 1988;). Dissimilatory reduction of sulfur compounds. . In Biology of Anaerobic Microorganisms, pp. 587–639. Edited by Zehnder A. J. B... New York:: Wiley;.
    [Google Scholar]
  12. Li X. Z., Luo Q. W., Wofford N. Q., Keller K. L., McInerney M. J., Wall J. D., Krumholz L. R.. ( 2009;). A molybdopterin oxidoreductase is involved in H2 oxidation in Desulfovibrio desulfuricans G20. . J Bacteriol 191:, 2675–2682. [CrossRef][PubMed]
    [Google Scholar]
  13. Lissolo T., Choi E. S., LeGall J., Peck H. D. Jr. ( 1986;). The presence of multiple intrinsic membrane nickel-containing hydrogenases in Desulfovibrio vulgaris (Hildenborough). . Biochem Biophys Res Commun 139:, 701–708. [CrossRef][PubMed]
    [Google Scholar]
  14. Matias P. M., Pereira I. A. C., Soares C. M., Carrondo M. A.. ( 2005;). Sulphate respiration from hydrogen in Desulfovibrio bacteria: a structural biology overview. . Prog Biophys Mol Biol 89:, 292–329. [CrossRef][PubMed]
    [Google Scholar]
  15. McInerney M. J., Bryant M. P.. ( 1981;). Anaerobic degradation of lactate by syntrophic associations of Methanosarcina barkeri and Desulfovibrio species and effect of H2 on acetate degradation. . Appl Environ Microbiol 41:, 346–354.[PubMed]
    [Google Scholar]
  16. McInerney M. J., Mackie R. I., Bryant M. P.. ( 1981;). Syntrophic association of a butyrate-degrading bacterium and methanosarcina enriched from bovine rumen fluid. . Appl Environ Microbiol 41:, 826–828.[PubMed]
    [Google Scholar]
  17. McInerney M. J., Rohlin L., Mouttaki H., Kim U., Krupp R. S., Rios-Hernandez L., Sieber J., Struchtemeyer C. G., Bhattacharyya A. et al. & other authors ( 2007;). The genome of Syntrophus aciditrophicus: life at the thermodynamic limit of microbial growth. . Proc Natl Acad Sci U S A 104:, 7600–7605. [CrossRef][PubMed]
    [Google Scholar]
  18. McInerney M. J., Struchtemeyer C. G., Sieber J., Mouttaki H., Stams A. J. M., Schink B., Rohlin L., Gunsalus R. P.. ( 2008;). Physiology, ecology, phylogeny, and genomics of microorganisms capable of syntrophic metabolism. . Ann N Y Acad Sci 1125:, 58–72. [CrossRef][PubMed]
    [Google Scholar]
  19. Oude Elferink S. J. W. H., Vorstman W. J. C., Sopjes A., Stams A. J. M.. ( 1998;). Characterization of the sulfate-reducing and syntrophic population in granular sludge from a full-scale anaerobic reactor treating papermill wastewater. . FEMS Microbiol Ecol 27:, 185–194. [CrossRef]
    [Google Scholar]
  20. Pankhania I. P., Spormann A. M., Hamilton W. A., Thauer R. K.. ( 1988;). Lactate conversion to acetate, CO2 and H2 in cell suspensions of Desulfovibrio vulgaris (Marburg): indications for the involvement of an energy driven reaction. . Arch Microbiol 150:, 26–31. [CrossRef]
    [Google Scholar]
  21. Pereira I. A. C., Romao C. V., Xavier A. V., LeGall J., Teixeira M.. ( 1998;). Electron transfer between hydrogenases and mono- and multiheme cytochromes in Desulfovibrio ssp. . J Biol Inorg Chem 3:, 494–498. [CrossRef]
    [Google Scholar]
  22. Pereira I. A. C., Haveman S. A., Voordouw G.. ( 2007;). Biochemical, genetic and genomic characterization of anaerobic electron transport pathways in sulphate-reducing Deltaproteobacteria. . In Sulphate-Reducing Bacteria: Environmental and Engineered Systems, pp. 215–240. Edited by Barton L. L., Hamilton W. A... Cambridge:: Cambridge University Press;. http://dx.doi.org/10.1017/CBO9780511541490.008 [CrossRef]
    [Google Scholar]
  23. Pfaffl M. W.. ( 2001;). A new mathematical model for relative quantification in real-time RT-PCR. . Nucleic Acids Res 29:, e45. [CrossRef][PubMed]
    [Google Scholar]
  24. Plugge C. M., Scholten J. C. M., Culley D. E., Nie L., Brockman F. J., Zhang W.. ( 2010;). Global transcriptomics analysis of the Desulfovibrio vulgaris change from syntrophic growth with Methano<1?show=[fo]?>sarcina barkeri to sulfidogenic metabolism. . Microbiology 156:, 2746–2756. [CrossRef][PubMed]
    [Google Scholar]
  25. Pohorelic B. K. J., Voordouw J. K., Lojou E., Dolla A., Harder J., Voordouw G.. ( 2002;). Effects of deletion of genes encoding Fe-only hydrogenase of Desulfovibrio vulgaris Hildenborough on hydrogen and lactate metabolism. . J Bacteriol 184:, 679–686. [CrossRef][PubMed]
    [Google Scholar]
  26. Prickril B. C., He S. H., Li C., Menon N., Choi E. S., Przybyla A. E., DerVartanian D. V., Peck H. D. Jr, Fauque G. et al. & other authors ( 1987;). Identification of three classes of hydrogenase in the genus, Desulfovibrio. . Biochem Biophys Res Commun 149:, 369–377. [CrossRef][PubMed]
    [Google Scholar]
  27. Rapp-Giles B. J., Casalot L., English R. S., Ringbauer J. A. Jr, Dolla A., Wall J. D.. ( 2000;). Cytochrome c3 mutants of Desulfovibrio desulfuricans. . Appl Environ Microbiol 66:, 671–677. [CrossRef][PubMed]
    [Google Scholar]
  28. Schink B., Friedrich M.. ( 1994;). Energetics of syntrophic fatty acid oxidation. . FEMS Microbiol Rev 15:, 85–94. [CrossRef]
    [Google Scholar]
  29. Stams A. J. M.. ( 1994;). Metabolic interactions between anaerobic bacteria in methanogenic environments. . Antonie van Leeuwenhoek 66:, 271–294. [CrossRef][PubMed]
    [Google Scholar]
  30. Stolyar S., Van Dien S., Hillesland K. L., Pinel N., Lie T. J., Leigh J. A., Stahl D. A.. ( 2007;). Metabolic modeling of a mutualistic microbial community. . Mol Syst Biol 3:, 92. [CrossRef][PubMed]
    [Google Scholar]
  31. Traore A. S., Fardeau M. L., Hatchikian C. E., Le Gall J., Belaich J. P.. ( 1983;). Energetics of growth of a defined mixed culture of Desulfovibrio vulgaris and Methanosarcina barkeri: interspecies hydrogen transfer in batch and continuous cultures. . Appl Environ Microbiol 46:, 1152–1156.[PubMed]
    [Google Scholar]
  32. Venceslau S. S., Lino R. R., Pereira I. A. C.. ( 2010;). The Qrc membrane complex, related to the alternative complex III, is a menaquinone reductase involved in sulfate respiration. . J Biol Chem 285:, 22774–22783. [CrossRef][PubMed]
    [Google Scholar]
  33. Voordouw G., Pollock W. B., Bruschi M., Guerlesquin F., Rapp-Giles B. J., Wall J. D.. ( 1990;). Functional expression of Desulfovibrio vulgaris Hildenborough cytochrome c3 in Desulfovibrio desulfuricans G200 after conjugational gene transfer from Escherichia coli. . J Bacteriol 172:, 6122–6126.[PubMed]
    [Google Scholar]
  34. Walker C. B., He Z. L., Yang Z. K., Ringbauer J. A. Jr, He Q., Zhou J., Voordouw G., Wall J. D., Arkin A. P. et al. & other authors ( 2009;). The electron transfer system of syntrophically grown Desulfovibrio vulgaris. . J Bacteriol 191:, 5793–5801. [CrossRef][PubMed]
    [Google Scholar]
  35. Weimer P. J., Van Kavelaar M. J., Michel C. B., Ng T. K.. ( 1988;). Effect of phosphate on the corrosion of carbon steel and on the composition of corrosion products in two-stage continuous cultures of Desulfovibrio desulfuricans. . Appl Environ Microbiol 54:, 386–396.[PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.051284-0
Loading
/content/journal/micro/10.1099/mic.0.051284-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error