1887

Abstract

is an opportunistic bacterium whose infections often involve the formation of a biofilm on implanted biomaterials. In , the exopolysaccharide facilitating bacterial adherence in a biofilm is polysaccharide intercellular adhesin (PIA), whose synthesis requires the enzymes encoded within the intercellular adhesin operon (). , the formation of biofilms is enhanced by conditions that repress tricarboxylic acid (TCA) cycle activity, such as growth in a medium containing glucose. In many Gram-positive bacteria, repression of TCA cycle genes in response to glucose is accomplished by catabolite control protein A (CcpA). CcpA is a member of the GalR–LacI repressor family that mediates carbon catabolite repression, leading us to hypothesize that catabolite control of biofilm formation is indirectly regulated by CcpA-dependent repression of the TCA cycle. To test this hypothesis, deletion mutants were constructed in strain 1457 and 1457- and the effects on TCA cycle activity, biofilm formation and virulence were assessed. As anticipated, deletion of derepressed TCA cycle activity and inhibited biofilm formation; however, deletion had only a modest effect on transcription. Surprisingly, deletion of in strain 1457-, a strain whose TCA cycle is inactive and where transcription is derepressed, strongly inhibited transcription. These observations demonstrate that CcpA is a positive effector of biofilm formation and transcription and a repressor of TCA cycle activity.

Funding
This study was supported by the:
  • , Hatch Act
  • , Institute of Agriculture and Natural Resources
  • , National Institutes of Health , (Award AI087668)
  • , University of Nebraska’s Undergraduate Creative Activities and Research Experiences
  • , Deutsche Forschungsgemeinschaft , (Award BI 1350/1-1)
Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.051243-0
2011-12-01
2021-03-01
Loading full text...

Full text loading...

/deliver/fulltext/micro/157/12/3458.html?itemId=/content/journal/micro/10.1099/mic.0.051243-0&mimeType=html&fmt=ahah

References

  1. Arciola C. R., Baldassarri L., Montanaro L. ( 2001). Presence of icaA and icaD genes and slime production in a collection of staphylococcal strains from catheter-associated infections. J Clin Microbiol 39:2151–2156 [CrossRef][PubMed]
    [Google Scholar]
  2. Barrau K., Boulamery A., Imbert G., Casalta J. P., Habib G., Messana T., Bonnet J. L., Rubinstein E., Raoult D. ( 2004). Causative organisms of infective endocarditis according to host status. Clin Microbiol Infect 10:302–308 [CrossRef][PubMed]
    [Google Scholar]
  3. Benoit M. R., Conant C. G., Ionescu-Zanetti C., Schwartz M., Matin A. ( 2010). New device for high-throughput viability screening of flow biofilms. Appl Environ Microbiol 76:4136–4142 [CrossRef][PubMed]
    [Google Scholar]
  4. Brückner R. ( 1997). Gene replacement in Staphylococcus carnosus and Staphylococcus xylosus. . FEMS Microbiol Lett 151:1–8 [CrossRef][PubMed]
    [Google Scholar]
  5. Brückner R., Titgemeyer F. ( 2002). Carbon catabolite repression in bacteria: choice of the carbon source and autoregulatory limitation of sugar utilization. FEMS Microbiol Lett 209:141–148 [CrossRef][PubMed]
    [Google Scholar]
  6. Chatterjee I., Becker P., Grundmeier M., Bischoff M., Somerville G. A., Peters G., Sinha B., Harraghy N., Proctor R. A., Herrmann M. ( 2005). Staphylococcus aureus ClpC is required for stress resistance, aconitase activity, growth recovery and death. J Bacteriol 187:4488–4496 [CrossRef][PubMed]
    [Google Scholar]
  7. Conlon K. M., Humphreys H., O’Gara J. P. ( 2002). icaR encodes a transcriptional repressor involved in environmental regulation of ica operon expression and biofilm formation in Staphylococcus epidermidis. . J Bacteriol 184:4400–4408 [CrossRef][PubMed]
    [Google Scholar]
  8. Cramton S. E., Ulrich M., Götz F., Döring G. ( 2001). Anaerobic conditions induce expression of polysaccharide intercellular adhesin in Staphylococcus aureus and Staphylococcus epidermidis. . Infect Immun 69:4079–4085 [CrossRef][PubMed]
    [Google Scholar]
  9. De Lencastre H., Wu S. W., Pinho M. G., Ludovice A. M., Filipe S., Gardete S., Sobral R., Gill S., Chung M., Tomasz A. ( 1999). Antibiotic resistance as a stress response: complete sequencing of a large number of chromosomal loci in Staphylococcus aureus strain COL that impact on the expression of resistance to methicillin. Microb Drug Resist 5:163–175 [CrossRef][PubMed]
    [Google Scholar]
  10. Dean B. A., Williams R. E., Hall F., Corse J. ( 1973). Phage typing of coagulase-negative staphylococci and micrococci. J Hyg (Lond) 71:261–270 [CrossRef][PubMed]
    [Google Scholar]
  11. Deighton M., Borland R. ( 1993). Regulation of slime production in Staphylococcus epidermidis by iron limitation. Infect Immun 61:4473–4479[PubMed]
    [Google Scholar]
  12. Deutscher J., Saier M. H. Jr ( 1983). ATP-dependent protein kinase-catalyzed phosphorylation of a seryl residue in HPr, a phosphate carrier protein of the phosphotransferase system in Streptococcus pyogenes. . Proc Natl Acad Sci U S A 80:6790–6794 [CrossRef][PubMed]
    [Google Scholar]
  13. Deutscher J., Reizer J., Fischer C., Galinier A., Saier M. H. Jr, Steinmetz M. ( 1994). Loss of protein kinase-catalyzed phosphorylation of HPr, a phosphocarrier protein of the phosphotransferase system, by mutation of the ptsH gene confers catabolite repression resistance to several catabolic genes of Bacillus subtilis. . J Bacteriol 176:3336–3344[PubMed]
    [Google Scholar]
  14. Deutscher J., Küster E., Bergstedt U., Charrier V., Hillen W. ( 1995). Protein kinase-dependent HPr/CcpA interaction links glycolytic activity to carbon catabolite repression in Gram-positive bacteria. Mol Microbiol 15:1049–1053 [CrossRef][PubMed]
    [Google Scholar]
  15. Dobinsky S., Kiel K., Rohde H., Bartscht K., Knobloch J. K., Horstkotte M. A., Mack D. ( 2003). Glucose-related dissociation between icaADBC transcription and biofilm expression by Staphylococcus epidermidis: evidence for an additional factor required for polysaccharide intercellular adhesin synthesis. J Bacteriol 185:2879–2886 [CrossRef][PubMed]
    [Google Scholar]
  16. Donlan R. M. ( 2001). Biofilms and device-associated infections. Emerg Infect Dis 7:277–281 [CrossRef][PubMed]
    [Google Scholar]
  17. El-Ahdab F., Benjamin D. K. Jr, Wang A., Cabell C. H., Chu V. H., Stryjewski M. E., Corey G. R., Sexton D. J., Reller L. B., Fowler V. G. Jr ( 2005). Risk of endocarditis among patients with prosthetic valves and Staphylococcus aureus bacteremia. Am J Med 118:225–229 [CrossRef][PubMed]
    [Google Scholar]
  18. Foster T. J. ( 1998). Molecular genetic analysis of Staphylococcal virulence. Methods in microbiology, bacterial pathogenesis433–454 Williams P., Ketley J., Salmond G. P. C. San Diego: Academic Press; [CrossRef]
    [Google Scholar]
  19. Galinier A., Haiech J., Kilhoffer M. C., Jaquinod M., Stülke J., Deutscher J., Martin-Verstraete I. ( 1997). The Bacillus subtilis crh gene encodes a HPr-like protein involved in carbon catabolite repression. Proc Natl Acad Sci U S A 94:8439–8444 [CrossRef][PubMed]
    [Google Scholar]
  20. Gerke C., Kraft A., Süssmuth R., Schweitzer O., Götz F. ( 1998). Characterization of the N-acetylglucosaminyltransferase activity involved in the biosynthesis of the Staphylococcus epidermidis polysaccharide intercellular adhesin. J Biol Chem 273:18586–18593 [CrossRef][PubMed]
    [Google Scholar]
  21. Handke L. D., Slater S. R., Conlon K. M., O’Donnell S. T., Olson M. E., Bryant K. A., Rupp M. E., O’Gara J. P., Fey P. D. ( 2007). σB and SarA independently regulate polysaccharide intercellular adhesin production in Staphylococcus epidermidis. . Can J Microbiol 53:82–91 [CrossRef][PubMed]
    [Google Scholar]
  22. Henkin T. M., Grundy F. J., Nicholson W. L., Chambliss G. H. ( 1991). Catabolite repression of α-amylase gene expression in Bacillus subtilis involves a trans-acting gene product homologous to the Escherichia coli lacl and galR repressors. Mol Microbiol 5:575–584 [CrossRef][PubMed]
    [Google Scholar]
  23. Horton R. M., Cai Z. L., Ho S. N., Pease L. R. ( 1990). Gene splicing by overlap extension: tailor-made genes using the polymerase chain reaction. Biotechniques 8:528–535[PubMed]
    [Google Scholar]
  24. Kim H. J., Roux A., Sonenshein A. L. ( 2002). Direct and indirect roles of CcpA in regulation of Bacillus subtilis Krebs cycle genes. Mol Microbiol 45:179–190 [CrossRef][PubMed]
    [Google Scholar]
  25. Kim J. H., Yang Y. K., Chambliss G. H. ( 2005). Evidence that Bacillus catabolite control protein CcpA interacts with RNA polymerase to inhibit transcription. Mol Microbiol 56:155–162 [CrossRef][PubMed]
    [Google Scholar]
  26. Kristian S. A., Birkenstock T. A., Sauder U., Mack D., Götz F., Landmann R. ( 2008). Biofilm formation induces C3a release and protects Staphylococcus epidermidis from IgG and complement deposition and from neutrophil-dependent killing. J Infect Dis 197:1028–1035 [CrossRef][PubMed]
    [Google Scholar]
  27. Leiter E. H. ( 1993). The NOD mouse: a model for analyzing the interplay between heredity and environment in development of autoimmune disease. ILAR J 35:1–14 [CrossRef]
    [Google Scholar]
  28. Lim Y., Jana M., Luong T. T., Lee C. Y. ( 2004). Control of glucose- and NaCl-induced biofilm formation by rbf in Staphylococcus aureus. . J Bacteriol 186:722–729 [CrossRef][PubMed]
    [Google Scholar]
  29. Lopez J. M., Thoms B. ( 1977). Role of sugar uptake and metabolic intermediates on catabolite repression in Bacillus subtilis. . J Bacteriol 129:217–224[PubMed]
    [Google Scholar]
  30. Ludwig H., Meinken C., Matin A., Stülke J. ( 2002). Insufficient expression of the ilvleu operon encoding enzymes of branched-chain amino acid biosynthesis limits growth of a Bacillus subtilis ccpA mutant. J Bacteriol 184:5174–5178 [CrossRef][PubMed]
    [Google Scholar]
  31. Mack D., Siemssen N., Laufs R. ( 1992). Parallel induction by glucose of adherence and a polysaccharide antigen specific for plastic-adherent Staphylococcus epidermidis: evidence for functional relation to intercellular adhesion. Infect Immun 60:2048–2057[PubMed]
    [Google Scholar]
  32. Nedelmann M., Sabottke A., Laufs R., Mack D. ( 1998). Generalized transduction for genetic linkage analysis and transfer of transposon insertions in different Staphylococcus epidermidis strains. Zentralbl Bakteriol 287:85–92[PubMed] [CrossRef]
    [Google Scholar]
  33. Nicholson W. L., Park Y. K., Henkin T. M., Won M., Weickert M. J., Gaskell J. A., Chambliss G. H. ( 1987). Catabolite repression-resistant mutations of the Bacillus subtilis alpha-amylase promoter affect transcription levels and are in an operator-like sequence. J Mol Biol 198:609–618 [CrossRef][PubMed]
    [Google Scholar]
  34. Novick R. P. ( 1991). Genetic systems in staphylococci. Methods in Enzymology587–636 San Diego: Academic Press;
    [Google Scholar]
  35. Piper C., Körfer R., Horstkotte D. ( 2001). Prosthetic valve endocarditis. Heart 85:590–593 [CrossRef][PubMed]
    [Google Scholar]
  36. Rupp M. E., Ulphani J. S., Fey P. D., Bartscht K., Mack D. ( 1999). Characterization of the importance of polysaccharide intercellular adhesin/hemagglutinin of Staphylococcus epidermidis in the pathogenesis of biomaterial-based infection in a mouse foreign body infection model. Infect Immun 67:2627–2632[PubMed]
    [Google Scholar]
  37. Sadykov M. R., Olson M. E., Halouska S., Zhu Y., Fey P. D., Powers R., Somerville G. A. ( 2008). Tricarboxylic acid cycle-dependent regulation of Staphylococcus epidermidis polysaccharide intercellular adhesin synthesis. J Bacteriol 190:7621–7632 [CrossRef][PubMed]
    [Google Scholar]
  38. Sadykov M. R., Zhang B., Halouska S., Nelson J. L., Kreimer L. W., Zhu Y., Powers R., Somerville G. A. ( 2010). Using NMR metabolomics to investigate tricarboxylic acid cycle-dependent signal transduction in Staphylococcus epidermidis. . J Biol Chem 285:36616–36624 [CrossRef][PubMed]
    [Google Scholar]
  39. Sambrook J., Fritsch E. F., Maniatis T. ( 1989). Molecular Cloning: a Laboratory Manual, 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  40. Schlag S., Nerz C., Birkenstock T. A., Altenberend F., Götz F. ( 2007). Inhibition of staphylococcal biofilm formation by nitrite. J Bacteriol 189:7911–7919 [CrossRef][PubMed]
    [Google Scholar]
  41. Seidl K., Stucki M., Ruegg M., Goerke C., Wolz C., Harris L., Berger-Bächi B., Bischoff M. ( 2006). Staphylococcus aureus CcpA affects virulence determinant production and antibiotic resistance. Antimicrob Agents Chemother 50:1183–1194 [CrossRef][PubMed]
    [Google Scholar]
  42. Seidl K., Bischoff M., Berger-Bächi B. ( 2008a). CcpA mediates the catabolite repression of tst in Staphylococcus aureus. . Infect Immun 76:5093–5099 [CrossRef][PubMed]
    [Google Scholar]
  43. Seidl K., Goerke C., Wolz C., Mack D., Berger-Bächi B., Bischoff M. ( 2008b). Staphylococcus aureus CcpA affects biofilm formation. Infect Immun 76:2044–2050 [CrossRef][PubMed]
    [Google Scholar]
  44. Seidl K., Müller S., François P., Kriebitzsch C., Schrenzel J., Engelmann S., Bischoff M., Berger-Bächi B. ( 2009). Effect of a glucose impulse on the CcpA regulon in Staphylococcus aureus. . BMC Microbiol 9:95 [CrossRef][PubMed]
    [Google Scholar]
  45. Shivers R. P., Dineen S. S., Sonenshein A. L. ( 2006). Positive regulation of Bacillus subtilis ackA by CodY and CcpA: establishing a potential hierarchy in carbon flow. Mol Microbiol 62:811–822 [CrossRef][PubMed]
    [Google Scholar]
  46. Somerville G. A., Proctor R. A. ( 2009). At the crossroads of bacterial metabolism and virulence factor synthesis in Staphylococci. Microbiol Mol Biol Rev 73:233–248 [CrossRef][PubMed]
    [Google Scholar]
  47. Somerville G. A., Cockayne A., Dürr M., Peschel A., Otto M., Musser J. M. ( 2003). Synthesis and deformylation of Staphylococcus aureus delta-toxin are linked to tricarboxylic acid cycle activity. J Bacteriol 185:6686–6694 [CrossRef][PubMed]
    [Google Scholar]
  48. Sonenshein A. L. ( 2007). Control of key metabolic intersections in Bacillus subtilis. . Nat Rev Microbiol 5:917–927 [CrossRef][PubMed]
    [Google Scholar]
  49. Tobisch S., Zühlke D., Bernhardt J., Stülke J., Hecker M. ( 1999). Role of CcpA in regulation of the central pathways of carbon catabolism in Bacillus subtilis. . J Bacteriol 181:6996–7004[PubMed]
    [Google Scholar]
  50. von Eiff C., Peters G., Heilmann C. ( 2002). Pathogenesis of infections due to coagulase-negative staphylococci. Lancet Infect Dis 2:677–685 [CrossRef][PubMed]
    [Google Scholar]
  51. Vuong C., Kidder J. B., Jacobson E. R., Otto M., Proctor R. A., Somerville G. A. ( 2005). Staphylococcus epidermidis polysaccharide intercellular adhesin production significantly increases during tricarboxylic acid cycle stress. J Bacteriol 187:2967–2973 [CrossRef][PubMed]
    [Google Scholar]
  52. Warner J. B., Lolkema J. S. ( 2003). CcpA-dependent carbon catabolite repression in bacteria. Microbiol Mol Biol Rev 67:475–490 [CrossRef][PubMed]
    [Google Scholar]
  53. Weickert M. J., Chambliss G. H. ( 1990). Site-directed mutagenesis of a catabolite repression operator sequence in Bacillus subtilis. . Proc Natl Acad Sci U S A 87:6238–6242 [CrossRef][PubMed]
    [Google Scholar]
  54. Wray L. V. Jr, Pettengill F. K., Fisher S. H. ( 1994). Catabolite repression of the Bacillus subtilis hut operon requires a cis-acting site located downstream of the transcription initiation site. J Bacteriol 176:1894–1902[PubMed]
    [Google Scholar]
  55. Zhu Y., Xiong Y. Q., Sadykov M. R., Fey P. D., Lei M. G., Lee C. Y., Bayer A. S., Somerville G. A. ( 2009). Tricarboxylic acid cycle-dependent attenuation of Staphylococcus aureus in vivo virulence by selective inhibition of amino acid transport. Infect Immun 77:4256–4264 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.051243-0
Loading
/content/journal/micro/10.1099/mic.0.051243-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error