1887

Abstract

is an opportunistic bacterium whose infections often involve the formation of a biofilm on implanted biomaterials. In , the exopolysaccharide facilitating bacterial adherence in a biofilm is polysaccharide intercellular adhesin (PIA), whose synthesis requires the enzymes encoded within the intercellular adhesin operon (). , the formation of biofilms is enhanced by conditions that repress tricarboxylic acid (TCA) cycle activity, such as growth in a medium containing glucose. In many Gram-positive bacteria, repression of TCA cycle genes in response to glucose is accomplished by catabolite control protein A (CcpA). CcpA is a member of the GalR–LacI repressor family that mediates carbon catabolite repression, leading us to hypothesize that catabolite control of biofilm formation is indirectly regulated by CcpA-dependent repression of the TCA cycle. To test this hypothesis, deletion mutants were constructed in strain 1457 and 1457- and the effects on TCA cycle activity, biofilm formation and virulence were assessed. As anticipated, deletion of derepressed TCA cycle activity and inhibited biofilm formation; however, deletion had only a modest effect on transcription. Surprisingly, deletion of in strain 1457-, a strain whose TCA cycle is inactive and where transcription is derepressed, strongly inhibited transcription. These observations demonstrate that CcpA is a positive effector of biofilm formation and transcription and a repressor of TCA cycle activity.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.051243-0
2011-12-01
2019-08-20
Loading full text...

Full text loading...

/deliver/fulltext/micro/157/12/3458.html?itemId=/content/journal/micro/10.1099/mic.0.051243-0&mimeType=html&fmt=ahah

References

  1. Arciola C. R. , Baldassarri L. , Montanaro L. . ( 2001; ). Presence of icaA and icaD genes and slime production in a collection of staphylococcal strains from catheter-associated infections. . J Clin Microbiol 39:, 2151–2156. [CrossRef] [PubMed]
    [Google Scholar]
  2. Barrau K. , Boulamery A. , Imbert G. , Casalta J. P. , Habib G. , Messana T. , Bonnet J. L. , Rubinstein E. , Raoult D. . ( 2004; ). Causative organisms of infective endocarditis according to host status. . Clin Microbiol Infect 10:, 302–308. [CrossRef] [PubMed]
    [Google Scholar]
  3. Benoit M. R. , Conant C. G. , Ionescu-Zanetti C. , Schwartz M. , Matin A. . ( 2010; ). New device for high-throughput viability screening of flow biofilms. . Appl Environ Microbiol 76:, 4136–4142. [CrossRef] [PubMed]
    [Google Scholar]
  4. Brückner R. . ( 1997; ). Gene replacement in Staphylococcus carnosus and Staphylococcus xylosus. . FEMS Microbiol Lett 151:, 1–8. [CrossRef] [PubMed]
    [Google Scholar]
  5. Brückner R. , Titgemeyer F. . ( 2002; ). Carbon catabolite repression in bacteria: choice of the carbon source and autoregulatory limitation of sugar utilization. . FEMS Microbiol Lett 209:, 141–148. [CrossRef] [PubMed]
    [Google Scholar]
  6. Chatterjee I. , Becker P. , Grundmeier M. , Bischoff M. , Somerville G. A. , Peters G. , Sinha B. , Harraghy N. , Proctor R. A. , Herrmann M. . ( 2005; ). Staphylococcus aureus ClpC is required for stress resistance, aconitase activity, growth recovery and death. . J Bacteriol 187:, 4488–4496. [CrossRef] [PubMed]
    [Google Scholar]
  7. Conlon K. M. , Humphreys H. , O’Gara J. P. . ( 2002; ). icaR encodes a transcriptional repressor involved in environmental regulation of ica operon expression and biofilm formation in Staphylococcus epidermidis. . J Bacteriol 184:, 4400–4408. [CrossRef] [PubMed]
    [Google Scholar]
  8. Cramton S. E. , Ulrich M. , Götz F. , Döring G. . ( 2001; ). Anaerobic conditions induce expression of polysaccharide intercellular adhesin in Staphylococcus aureus and Staphylococcus epidermidis. . Infect Immun 69:, 4079–4085. [CrossRef] [PubMed]
    [Google Scholar]
  9. De Lencastre H. , Wu S. W. , Pinho M. G. , Ludovice A. M. , Filipe S. , Gardete S. , Sobral R. , Gill S. , Chung M. , Tomasz A. . ( 1999; ). Antibiotic resistance as a stress response: complete sequencing of a large number of chromosomal loci in Staphylococcus aureus strain COL that impact on the expression of resistance to methicillin. . Microb Drug Resist 5:, 163–175. [CrossRef] [PubMed]
    [Google Scholar]
  10. Dean B. A. , Williams R. E. , Hall F. , Corse J. . ( 1973; ). Phage typing of coagulase-negative staphylococci and micrococci. . J Hyg (Lond) 71:, 261–270. [CrossRef] [PubMed]
    [Google Scholar]
  11. Deighton M. , Borland R. . ( 1993; ). Regulation of slime production in Staphylococcus epidermidis by iron limitation. . Infect Immun 61:, 4473–4479.[PubMed]
    [Google Scholar]
  12. Deutscher J. , Saier M. H. Jr . ( 1983; ). ATP-dependent protein kinase-catalyzed phosphorylation of a seryl residue in HPr, a phosphate carrier protein of the phosphotransferase system in Streptococcus pyogenes. . Proc Natl Acad Sci U S A 80:, 6790–6794. [CrossRef] [PubMed]
    [Google Scholar]
  13. Deutscher J. , Reizer J. , Fischer C. , Galinier A. , Saier M. H. Jr , Steinmetz M. . ( 1994; ). Loss of protein kinase-catalyzed phosphorylation of HPr, a phosphocarrier protein of the phosphotransferase system, by mutation of the ptsH gene confers catabolite repression resistance to several catabolic genes of Bacillus subtilis. . J Bacteriol 176:, 3336–3344.[PubMed]
    [Google Scholar]
  14. Deutscher J. , Küster E. , Bergstedt U. , Charrier V. , Hillen W. . ( 1995; ). Protein kinase-dependent HPr/CcpA interaction links glycolytic activity to carbon catabolite repression in Gram-positive bacteria. . Mol Microbiol 15:, 1049–1053. [CrossRef] [PubMed]
    [Google Scholar]
  15. Dobinsky S. , Kiel K. , Rohde H. , Bartscht K. , Knobloch J. K. , Horstkotte M. A. , Mack D. . ( 2003; ). Glucose-related dissociation between icaADBC transcription and biofilm expression by Staphylococcus epidermidis: evidence for an additional factor required for polysaccharide intercellular adhesin synthesis. . J Bacteriol 185:, 2879–2886. [CrossRef] [PubMed]
    [Google Scholar]
  16. Donlan R. M. . ( 2001; ). Biofilms and device-associated infections. . Emerg Infect Dis 7:, 277–281. [CrossRef] [PubMed]
    [Google Scholar]
  17. El-Ahdab F. , Benjamin D. K. Jr , Wang A. , Cabell C. H. , Chu V. H. , Stryjewski M. E. , Corey G. R. , Sexton D. J. , Reller L. B. , Fowler V. G. Jr . ( 2005; ). Risk of endocarditis among patients with prosthetic valves and Staphylococcus aureus bacteremia. . Am J Med 118:, 225–229. [CrossRef] [PubMed]
    [Google Scholar]
  18. Foster T. J. . ( 1998; ). Molecular genetic analysis of Staphylococcal virulence. . In Methods in microbiology, bacterial pathogenesis, pp. 433–454. Edited by Williams P. , Ketley J. , Salmond G. P. C. . . San Diego:: Academic Press;. [CrossRef]
    [Google Scholar]
  19. Galinier A. , Haiech J. , Kilhoffer M. C. , Jaquinod M. , Stülke J. , Deutscher J. , Martin-Verstraete I. . ( 1997; ). The Bacillus subtilis crh gene encodes a HPr-like protein involved in carbon catabolite repression. . Proc Natl Acad Sci U S A 94:, 8439–8444. [CrossRef] [PubMed]
    [Google Scholar]
  20. Gerke C. , Kraft A. , Süssmuth R. , Schweitzer O. , Götz F. . ( 1998; ). Characterization of the N-acetylglucosaminyltransferase activity involved in the biosynthesis of the Staphylococcus epidermidis polysaccharide intercellular adhesin. . J Biol Chem 273:, 18586–18593. [CrossRef] [PubMed]
    [Google Scholar]
  21. Handke L. D. , Slater S. R. , Conlon K. M. , O’Donnell S. T. , Olson M. E. , Bryant K. A. , Rupp M. E. , O’Gara J. P. , Fey P. D. . ( 2007; ). σB and SarA independently regulate polysaccharide intercellular adhesin production in Staphylococcus epidermidis. . Can J Microbiol 53:, 82–91. [CrossRef] [PubMed]
    [Google Scholar]
  22. Henkin T. M. , Grundy F. J. , Nicholson W. L. , Chambliss G. H. . ( 1991; ). Catabolite repression of α-amylase gene expression in Bacillus subtilis involves a trans-acting gene product homologous to the Escherichia coli lacl and galR repressors. . Mol Microbiol 5:, 575–584. [CrossRef] [PubMed]
    [Google Scholar]
  23. Horton R. M. , Cai Z. L. , Ho S. N. , Pease L. R. . ( 1990; ). Gene splicing by overlap extension: tailor-made genes using the polymerase chain reaction. . Biotechniques 8:, 528–535.[PubMed]
    [Google Scholar]
  24. Kim H. J. , Roux A. , Sonenshein A. L. . ( 2002; ). Direct and indirect roles of CcpA in regulation of Bacillus subtilis Krebs cycle genes. . Mol Microbiol 45:, 179–190. [CrossRef] [PubMed]
    [Google Scholar]
  25. Kim J. H. , Yang Y. K. , Chambliss G. H. . ( 2005; ). Evidence that Bacillus catabolite control protein CcpA interacts with RNA polymerase to inhibit transcription. . Mol Microbiol 56:, 155–162. [CrossRef] [PubMed]
    [Google Scholar]
  26. Kristian S. A. , Birkenstock T. A. , Sauder U. , Mack D. , Götz F. , Landmann R. . ( 2008; ). Biofilm formation induces C3a release and protects Staphylococcus epidermidis from IgG and complement deposition and from neutrophil-dependent killing. . J Infect Dis 197:, 1028–1035. [CrossRef] [PubMed]
    [Google Scholar]
  27. Leiter E. H. . ( 1993; ). The NOD mouse: a model for analyzing the interplay between heredity and environment in development of autoimmune disease. . ILAR J 35:, 1–14.[CrossRef]
    [Google Scholar]
  28. Lim Y. , Jana M. , Luong T. T. , Lee C. Y. . ( 2004; ). Control of glucose- and NaCl-induced biofilm formation by rbf in Staphylococcus aureus. . J Bacteriol 186:, 722–729. [CrossRef] [PubMed]
    [Google Scholar]
  29. Lopez J. M. , Thoms B. . ( 1977; ). Role of sugar uptake and metabolic intermediates on catabolite repression in Bacillus subtilis. . J Bacteriol 129:, 217–224.[PubMed]
    [Google Scholar]
  30. Ludwig H. , Meinken C. , Matin A. , Stülke J. . ( 2002; ). Insufficient expression of the ilvleu operon encoding enzymes of branched-chain amino acid biosynthesis limits growth of a Bacillus subtilis ccpA mutant. . J Bacteriol 184:, 5174–5178. [CrossRef] [PubMed]
    [Google Scholar]
  31. Mack D. , Siemssen N. , Laufs R. . ( 1992; ). Parallel induction by glucose of adherence and a polysaccharide antigen specific for plastic-adherent Staphylococcus epidermidis: evidence for functional relation to intercellular adhesion. . Infect Immun 60:, 2048–2057.[PubMed]
    [Google Scholar]
  32. Nedelmann M. , Sabottke A. , Laufs R. , Mack D. . ( 1998; ). Generalized transduction for genetic linkage analysis and transfer of transposon insertions in different Staphylococcus epidermidis strains. . Zentralbl Bakteriol 287:, 85–92.[PubMed] [CrossRef]
    [Google Scholar]
  33. Nicholson W. L. , Park Y. K. , Henkin T. M. , Won M. , Weickert M. J. , Gaskell J. A. , Chambliss G. H. . ( 1987; ). Catabolite repression-resistant mutations of the Bacillus subtilis alpha-amylase promoter affect transcription levels and are in an operator-like sequence. . J Mol Biol 198:, 609–618. [CrossRef] [PubMed]
    [Google Scholar]
  34. Novick R. P. . ( 1991; ). Genetic systems in staphylococci. . In Methods in Enzymology, pp. 587–636. San Diego:: Academic Press;.
    [Google Scholar]
  35. Piper C. , Körfer R. , Horstkotte D. . ( 2001; ). Prosthetic valve endocarditis. . Heart 85:, 590–593. [CrossRef] [PubMed]
    [Google Scholar]
  36. Rupp M. E. , Ulphani J. S. , Fey P. D. , Bartscht K. , Mack D. . ( 1999; ). Characterization of the importance of polysaccharide intercellular adhesin/hemagglutinin of Staphylococcus epidermidis in the pathogenesis of biomaterial-based infection in a mouse foreign body infection model. . Infect Immun 67:, 2627–2632.[PubMed]
    [Google Scholar]
  37. Sadykov M. R. , Olson M. E. , Halouska S. , Zhu Y. , Fey P. D. , Powers R. , Somerville G. A. . ( 2008; ). Tricarboxylic acid cycle-dependent regulation of Staphylococcus epidermidis polysaccharide intercellular adhesin synthesis. . J Bacteriol 190:, 7621–7632. [CrossRef] [PubMed]
    [Google Scholar]
  38. Sadykov M. R. , Zhang B. , Halouska S. , Nelson J. L. , Kreimer L. W. , Zhu Y. , Powers R. , Somerville G. A. . ( 2010; ). Using NMR metabolomics to investigate tricarboxylic acid cycle-dependent signal transduction in Staphylococcus epidermidis. . J Biol Chem 285:, 36616–36624. [CrossRef] [PubMed]
    [Google Scholar]
  39. Sambrook J. , Fritsch E. F. , Maniatis T. . ( 1989; ). Molecular Cloning: a Laboratory Manual, , 2nd edn.. Cold Spring Harbor, NY:: Cold Spring Harbor Laboratory;.
    [Google Scholar]
  40. Schlag S. , Nerz C. , Birkenstock T. A. , Altenberend F. , Götz F. . ( 2007; ). Inhibition of staphylococcal biofilm formation by nitrite. . J Bacteriol 189:, 7911–7919. [CrossRef] [PubMed]
    [Google Scholar]
  41. Seidl K. , Stucki M. , Ruegg M. , Goerke C. , Wolz C. , Harris L. , Berger-Bächi B. , Bischoff M. . ( 2006; ). Staphylococcus aureus CcpA affects virulence determinant production and antibiotic resistance. . Antimicrob Agents Chemother 50:, 1183–1194. [CrossRef] [PubMed]
    [Google Scholar]
  42. Seidl K. , Bischoff M. , Berger-Bächi B. . ( 2008a; ). CcpA mediates the catabolite repression of tst in Staphylococcus aureus. . Infect Immun 76:, 5093–5099. [CrossRef] [PubMed]
    [Google Scholar]
  43. Seidl K. , Goerke C. , Wolz C. , Mack D. , Berger-Bächi B. , Bischoff M. . ( 2008b; ). Staphylococcus aureus CcpA affects biofilm formation. . Infect Immun 76:, 2044–2050. [CrossRef] [PubMed]
    [Google Scholar]
  44. Seidl K. , Müller S. , François P. , Kriebitzsch C. , Schrenzel J. , Engelmann S. , Bischoff M. , Berger-Bächi B. . ( 2009; ). Effect of a glucose impulse on the CcpA regulon in Staphylococcus aureus. . BMC Microbiol 9:, 95. [CrossRef] [PubMed]
    [Google Scholar]
  45. Shivers R. P. , Dineen S. S. , Sonenshein A. L. . ( 2006; ). Positive regulation of Bacillus subtilis ackA by CodY and CcpA: establishing a potential hierarchy in carbon flow. . Mol Microbiol 62:, 811–822. [CrossRef] [PubMed]
    [Google Scholar]
  46. Somerville G. A. , Proctor R. A. . ( 2009; ). At the crossroads of bacterial metabolism and virulence factor synthesis in Staphylococci. . Microbiol Mol Biol Rev 73:, 233–248. [CrossRef] [PubMed]
    [Google Scholar]
  47. Somerville G. A. , Cockayne A. , Dürr M. , Peschel A. , Otto M. , Musser J. M. . ( 2003; ). Synthesis and deformylation of Staphylococcus aureus delta-toxin are linked to tricarboxylic acid cycle activity. . J Bacteriol 185:, 6686–6694. [CrossRef] [PubMed]
    [Google Scholar]
  48. Sonenshein A. L. . ( 2007; ). Control of key metabolic intersections in Bacillus subtilis. . Nat Rev Microbiol 5:, 917–927. [CrossRef] [PubMed]
    [Google Scholar]
  49. Tobisch S. , Zühlke D. , Bernhardt J. , Stülke J. , Hecker M. . ( 1999; ). Role of CcpA in regulation of the central pathways of carbon catabolism in Bacillus subtilis. . J Bacteriol 181:, 6996–7004.[PubMed]
    [Google Scholar]
  50. von Eiff C. , Peters G. , Heilmann C. . ( 2002; ). Pathogenesis of infections due to coagulase-negative staphylococci. . Lancet Infect Dis 2:, 677–685. [CrossRef] [PubMed]
    [Google Scholar]
  51. Vuong C. , Kidder J. B. , Jacobson E. R. , Otto M. , Proctor R. A. , Somerville G. A. . ( 2005; ). Staphylococcus epidermidis polysaccharide intercellular adhesin production significantly increases during tricarboxylic acid cycle stress. . J Bacteriol 187:, 2967–2973. [CrossRef] [PubMed]
    [Google Scholar]
  52. Warner J. B. , Lolkema J. S. . ( 2003; ). CcpA-dependent carbon catabolite repression in bacteria. . Microbiol Mol Biol Rev 67:, 475–490. [CrossRef] [PubMed]
    [Google Scholar]
  53. Weickert M. J. , Chambliss G. H. . ( 1990; ). Site-directed mutagenesis of a catabolite repression operator sequence in Bacillus subtilis. . Proc Natl Acad Sci U S A 87:, 6238–6242. [CrossRef] [PubMed]
    [Google Scholar]
  54. Wray L. V. Jr , Pettengill F. K. , Fisher S. H. . ( 1994; ). Catabolite repression of the Bacillus subtilis hut operon requires a cis-acting site located downstream of the transcription initiation site. . J Bacteriol 176:, 1894–1902.[PubMed]
    [Google Scholar]
  55. Zhu Y. , Xiong Y. Q. , Sadykov M. R. , Fey P. D. , Lei M. G. , Lee C. Y. , Bayer A. S. , Somerville G. A. . ( 2009; ). Tricarboxylic acid cycle-dependent attenuation of Staphylococcus aureus in vivo virulence by selective inhibition of amino acid transport. . Infect Immun 77:, 4256–4264. [CrossRef] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.051243-0
Loading
/content/journal/micro/10.1099/mic.0.051243-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error