1887

Abstract

γ-Aminobutyric acid (GABA) transport and catabolism in are subject to a complex transcriptional control that depends on the nutritional status of the cells. The expression of the genes that form the regulon is inducible by GABA and sensitive to nitrogen catabolite repression (NCR). GABA induction of these genes is mediated by Uga3 and Dal81 transcription factors, whereas GATA factors are responsible for NCR. Here, we show how members of the regulon share the activation mechanism. Our results show that both Uga3 and Dal81 interact with genes in a GABA-dependent manner, and that they depend on each other for the interaction with their target promoters and the transcriptional activation. The typical DNA-binding domain Zn(II)-Cys of Dal81 is unnecessary for its activity and Uga3 acts as a bridge between Dal81 and DNA. Both the -activation activity of the GATA factor Gln3 and the repressive activity of the GATA factor Dal80 are exerted by their interaction with promoters in response to GABA, indicating that Uga3, Dal81, Gln3 and Dal80 all act in concert to induce the expression of genes. So, an interplay between the factors responsible for GABA induction and those responsible for NCR in the regulation of the genes is proposed here.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.051235-0
2012-04-01
2019-12-12
Loading full text...

Full text loading...

/deliver/fulltext/micro/158/4/925.html?itemId=/content/journal/micro/10.1099/mic.0.051235-0&mimeType=html&fmt=ahah

References

  1. Abdel-Sater F., Iraqui I., Urrestarazu A., André B.. ( 2004;). The external amino acid signaling pathway promotes activation of Stp1 and Uga35/Dal81 transcription factors for induction of the AGP1 gene in Saccharomyces cerevisiae. . Genetics 166:, 1727–1739. [CrossRef][PubMed]
    [Google Scholar]
  2. André B.. ( 1990;). The UGA3 gene regulating the GABA catabolic pathway in Saccharomyces cerevisiae codes for a putative zinc-finger protein acting on RNA amount. . Mol Gen Genet 220:, 269–276. [CrossRef][PubMed]
    [Google Scholar]
  3. André B., Jauniaux J. C.. ( 1990a;). Nucleotide sequence of the yeast UGA1 gene encoding GABA transaminase. . Nucleic Acids Res 18:, 3049. [CrossRef][PubMed]
    [Google Scholar]
  4. André B., Jauniaux J. C.. ( 1990b;). Nucleotide sequence of the DURM gene coding for a positive regulator of allophanate-inducible genes in Saccharomyces cerevisiae. . Nucleic Acids Res 18:, 7136. [CrossRef][PubMed]
    [Google Scholar]
  5. André B., Hein C., Grenson M., Jauniaux J. C.. ( 1993;). Cloning and expression of the UGA4 gene coding for the inducible GABA-specific transport protein of Saccharomyces cerevisiae. . Mol Gen Genet 237:, 17–25. [CrossRef][PubMed]
    [Google Scholar]
  6. André B., Talibi D., Soussi Boudekou S., Hein C., Vissers S., Coornaert D.. ( 1995;). Two mutually exclusive regulatory systems inhibit UASGATA, a cluster of 5′-GAT(A/T)A-3′ upstream from the UGA4 gene of Saccharomyces cerevisiae. . Nucleic Acids Res 23:, 558–564. [CrossRef][PubMed]
    [Google Scholar]
  7. Bechet J., Greenson M., Wiame J. M.. ( 1970;). Mutations affecting the repressibility of arginine biosynthetic enzymes in Saccharomyces cerevisiae. . Eur J Biochem 12:, 31–39. [CrossRef][PubMed]
    [Google Scholar]
  8. Boban M., Ljungdahl P. O.. ( 2007;). Dal81 enhances Stp1- and Stp2-dependent transcription necessitating negative modulation by inner nuclear membrane protein Asi1 in Saccharomyces cerevisiae. . Genetics 176:, 2087–2097. [CrossRef][PubMed]
    [Google Scholar]
  9. Bricmont P. A., Daugherty J. R., Cooper T. G.. ( 1991;). The DAL81 gene product is required for induced expression of two differently regulated nitrogen catabolic genes in Saccharomyces cerevisiae. . Mol Cell Biol 11:, 1161–1166.[PubMed]
    [Google Scholar]
  10. Cardillo S. B., Bermúdez Moretti M., Correa García S.. ( 2010;). Uga3 and Uga35/Dal81 transcription factors regulate UGA4 transcription in response to gamma-aminobutyric acid and leucine. . Eukaryot Cell 9:, 1262–1271. [CrossRef][PubMed]
    [Google Scholar]
  11. Cardillo S. B., Correa García S., Bermúdez Moretti M.. ( 2011;). Common features and differences in the expression of the three genes forming the UGA regulon in Saccharomyces cerevisiae. . Biochem Biophys Res Commun 410:, 885–889. [CrossRef][PubMed]
    [Google Scholar]
  12. Coffman J. A., Rai R., Loprete D. M., Cunningham T., Svetlov V., Cooper T. G.. ( 1997;). Cross regulation of four GATA factors that control nitrogen catabolic gene expression in Saccharomyces cerevisiae. . J Bacteriol 179:, 3416–3429.[PubMed]
    [Google Scholar]
  13. Coleman S. T., Fang T. K., Rovinsky S. A., Turano F. J., Moye-Rowley W. S.. ( 2001;). Expression of a glutamate decarboxylase homologue is required for normal oxidative stress tolerance in Saccharomyces cerevisiae. . J Biol Chem 276:, 244–250. [CrossRef][PubMed]
    [Google Scholar]
  14. Coornaert D., Vissers S., André B.. ( 1991;). The pleiotropic UGA35(DURL) regulatory gene of Saccharomyces cerevisiae: cloning, sequence and identity with the DAL81 gene. . Gene 97:, 163–171. [CrossRef][PubMed]
    [Google Scholar]
  15. Cunningham T. S., Dorrington R. A., Cooper T. G.. ( 1994;). The UGA4 UASNTR site required for GLN3-dependent transcriptional activation also mediates DAL80-responsive regulation and DAL80 protein binding in Saccharomyces cerevisiae. . J Bacteriol 176:, 4718–4725.[PubMed]
    [Google Scholar]
  16. Cunningham T. S., Rai R., Cooper T. G.. ( 2000;). The level of DAL80 expression down-regulates GATA factor-mediated transcription in Saccharomyces cerevisiae. . J Bacteriol 182:, 6584–6591. [CrossRef][PubMed]
    [Google Scholar]
  17. Daugherty J. R., Rai R., el Berry H. M., Cooper T. G.. ( 1993;). Regulatory circuit for responses of nitrogen catabolic gene expression to the GLN3 and DAL80 proteins and nitrogen catabolite repression in Saccharomyces cerevisiae. . J Bacteriol 175:, 64–73.[PubMed]
    [Google Scholar]
  18. Davis M. A., Small A. J., Kourambas S., Hynes M. J.. ( 1996;). The tamA gene of Aspergillus nidulans contains a putative zinc cluster motif which is not required for gene function. . J Bacteriol 178:, 3406–3409.[PubMed]
    [Google Scholar]
  19. Gauss R., Trautwein M., Sommer T., Spang A.. ( 2005;). New modules for the repeated internal and N-terminal epitope tagging of genes in Saccharomyces cerevisiae. . Yeast 22:, 1–12. [CrossRef][PubMed]
    [Google Scholar]
  20. Georis I., Feller A., Vierendeels F., Dubois E.. ( 2009;). The yeast GATA factor Gat1 occupies a central position in nitrogen catabolite repression-sensitive gene activation. . Mol Cell Biol 29:, 3803–3815. [CrossRef][PubMed]
    [Google Scholar]
  21. Gietz R. D., Woods R. A.. ( 2002;). Transformation of yeast by lithium acetate/single-stranded carrier DNA/polyethylene glycol method. . Methods Enzymol 350:, 87–96. [CrossRef][PubMed]
    [Google Scholar]
  22. Godard P., Urrestarazu A., Vissers S., Kontos K., Bontempi G., van Helden J., André B.. ( 2007;). Effect of 21 different nitrogen sources on global gene expression in the yeast Saccharomyces cerevisiae. . Mol Cell Biol 27:, 3065–3086. [CrossRef][PubMed]
    [Google Scholar]
  23. Grenson M.. ( 1987;). 4-aminobutiryc acid (GABA) uptake in Baker’s yeast Saccharomyces cerevisiae is mediated by the general amino-acid permease, the proline permease and GABA-specific integrated into the GABA-catabolic pathway. . Biochemistry 6:, 35–39.
    [Google Scholar]
  24. Harbison C. T., Gordon D. B., Lee T. I., Rinaldi N. J., Macisaac K. D., Danford T. W., Hannett N. M., Tagne J. B., Reynolds D. B.. & other authors ( 2004;). Transcriptional regulatory code of a eukaryotic genome. . Nature 431:, 99–104. [CrossRef][PubMed]
    [Google Scholar]
  25. Idicula A. M.. ( 2002;). Binding and transcriptional activation by Uga3p, a zinc binuclear cluster protein of Saccharomyces cerevisiae: redefining the UASGABA and the Uga3p binding site. . PhD thesis, Department of Biochemistry, Microbiology and Biotechnology, Rhodes University, USA.
  26. Idicula A. M., Blatch G. L., Cooper T. G., Dorrington R. A.. ( 2002;). Binding and activation by the zinc cluster transcription factors of Saccharomyces cerevisiae. Redefining the UASGABA and its interaction with Uga3p. . J Biol Chem 277:, 45977–45983. [CrossRef][PubMed]
    [Google Scholar]
  27. Iraqui I., Vissers S., Bernard F., de Craene J. O., Boles E., Urrestarazu A., André B.. ( 1999;). Amino acid signaling in Saccharomyces cerevisiae: a permease-like sensor of external amino acids and F-Box protein Grr1p are required for transcriptional induction of the AGP1 gene, which encodes a broad-specificity amino acid permease. . Mol Cell Biol 19:, 989–1001.[PubMed]
    [Google Scholar]
  28. Jacobs P., Jauniaux J. C., Grenson M.. ( 1980;). A cis-dominant regulatory mutation linked to the argB-argC gene cluster in Saccharomyces cerevisiae. . J Mol Biol 139:, 691–704. [CrossRef][PubMed]
    [Google Scholar]
  29. Livak K. J., Schmittgen T. D.. ( 2001;). Analysis of relative gene expression data using real-time quantitative PCR and the 2−▵▵CT Method. . Methods 25:, 402–408. [CrossRef][PubMed]
    [Google Scholar]
  30. Longtine M. S., McKenzie A. III, Demarini D. J., Shah N. G., Wach A., Brachat A., Philippsen P., Pringle J. R.. ( 1998;). Additional modules for versatile and economical PCR-based gene deletion and modification in Saccharomyces cerevisiae. . Yeast 14:, 953–961. [CrossRef][PubMed]
    [Google Scholar]
  31. Luzzani C., Cardillo S. B., Bermúdez Moretti M., Correa García S.. ( 2007;). New insights into the regulation of the Saccharomyces cerevisiae UGA4 gene: two parallel pathways participate in carbon-regulated transcription. . Microbiology 153:, 3677–3684. [CrossRef][PubMed]
    [Google Scholar]
  32. Olive M. G., Daugherty J. R., Cooper T. G.. ( 1991;). DAL82, a second gene required for induction of allantoin system gene transcription in Saccharomyces cerevisiae. . J Bacteriol 173:, 255–261.[PubMed]
    [Google Scholar]
  33. Polotnianka R., Monahan B. J., Hynes M. J., Davis M. A.. ( 2004;). TamA interacts with LeuB, the homologue of Saccharomyces cerevisiae Leu3p, to regulate gdhA expression in Aspergillus nidulans. . Mol Genet Genomics 272:, 452–459. [CrossRef][PubMed]
    [Google Scholar]
  34. Ramos F., El Guezzar M., Grenson M., Wiame J. M.. ( 1985;). Mutations affecting the enzymes involved in the utilization of 4-aminobutyric acid as nitrogen source by the yeast Saccharomyces cerevisiae. . Eur J Biochem 149:, 401–404. [CrossRef][PubMed]
    [Google Scholar]
  35. Schmitt M. E., Brown T. A., Trumpower B. L.. ( 1990;). A rapid and simple method for preparation of RNA from Saccharomyces cerevisiae. . Nucleic Acids Res 18:, 3091–3092. [CrossRef][PubMed]
    [Google Scholar]
  36. Scott S., Abul-Hamd A. T., Cooper T. G.. ( 2000;). Roles of the Dal82p domains in allophanate/oxalurate-dependent gene expression in Saccharomyces cerevisiae. . J Biol Chem 275:, 30886–30893. [CrossRef][PubMed]
    [Google Scholar]
  37. Sikorski R. S., Hieter P.. ( 1989;). A system of shuttle vectors and yeast host strains designed for efficient manipulation of DNA in Saccharomyces cerevisiae. . Genetics 122:, 19–27.[PubMed]
    [Google Scholar]
  38. Small A. J., Todd R. B., Zanker M. C., Delimitrou S., Hynes M. J., Davis M. A.. ( 2001;). Functional analysis of TamA, a coactivator of nitrogen-regulated gene expression in Aspergillus nidulans. . Mol Genet Genomics 265:, 636–646. [CrossRef][PubMed]
    [Google Scholar]
  39. Soussi-Boudekou S., Vissers S., Urrestarazu A., Jauniaux J. C., André B.. ( 1997;). Gzf3p, a fourth GATA factor involved in nitrogen-regulated transcription in Saccharomyces cerevisiae. . Mol Microbiol 23:, 1157–1168. [CrossRef][PubMed]
    [Google Scholar]
  40. Storici F., Resnick M. A.. ( 2003;). Delitto perfetto targeted mutagenesis in yeast with oligonucleotides. . Genet Eng (N Y) 25:, 189–207.[PubMed]
    [Google Scholar]
  41. Storici F., Lewis L. K., Resnick M. A.. ( 2001;). In vivo site-directed mutagenesis using oligonucleotides. . Nat Biotechnol 19:, 773–776. [CrossRef][PubMed]
    [Google Scholar]
  42. Sylvain M. A., Liang X. B., Hellauer K., Turcotte B.. ( 2011;). Yeast zinc cluster proteins Dal81 and Uga3 cooperate by targeting common coactivators for transcriptional activation of γ-aminobutyrate responsive genes. . Genetics 188:, 523–534. [CrossRef][PubMed]
    [Google Scholar]
  43. Talibi D., Grenson M., André B.. ( 1995;). Cis- and trans-acting elements determining induction of the genes of the gamma-aminobutyrate (GABA) utilization pathway in Saccharomyces cerevisiae. . Nucleic Acids Res 23:, 550–557. [CrossRef][PubMed]
    [Google Scholar]
  44. Vissers S., André B., Muyldermans F., Grenson M.. ( 1989;). Positive and negative regulatory elements control the expression of the UGA4 gene coding for the inducible 4-aminobutyric-acid-specific permease in Saccharomyces cerevisiae. . Eur J Biochem 181:, 357–361. [CrossRef][PubMed]
    [Google Scholar]
  45. Vissers S., André B., Muyldermans F., Grenson M.. ( 1990;). Induction of the 4-aminobutyrate and urea-catabolic pathways in Saccharomyces cerevisiae. Specific and common transcriptional regulators. . Eur J Biochem 187:, 611–616. [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.051235-0
Loading
/content/journal/micro/10.1099/mic.0.051235-0
Loading

Data & Media loading...

Supplements

Supplementary material 

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error