1887

Abstract

In enterobacteria such as and species, flagellar biogenesis is strictly dependent upon the master regulator . Here, we demonstrate that in enterohaemorrhagic (EHEC), the flagellar regulon is controlled by ClpXP, a member of the ATP-dependent protease family, through two pathways: (i) post-translational control of the FlhD/FlhC master regulator and (ii) transcriptional control of the operon. Both FlhD and FlhC proteins accumulated markedly following ClpXP depletion, and their half-lives were significantly longer in the mutant cells, suggesting that ClpXP is responsible for degrading FlhD and FlhC proteins, leading to downregulation of flagellar expression. ClpXP was involved in regulating the transcription of the promoter only when the cells had entered stationary phase in a culture medium that markedly induced expression of the locus of enterocyte effacement (LEE). Comparative analyses of transcription from the promoter in EHEC cells with different genetic backgrounds suggested that the downregulation of expression by ClpXP is dependent on the LEE-encoded GrlR–GrlA system. We have also shown that the degradation of FlhD and FlhC by ClpXP is responsible for downregulating flagellar expression even when LEE expression is induced.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.051151-0
2011-11-01
2020-01-21
Loading full text...

Full text loading...

/deliver/fulltext/micro/157/11/3094.html?itemId=/content/journal/micro/10.1099/mic.0.051151-0&mimeType=html&fmt=ahah

References

  1. Abe H., Tatsuno I., Tobe T., Okutani A., Sasakawa C..( 2002;). Bicarbonate ion stimulates the expression of locus of enterocyte effacement-encoded genes in enterohemorrhagic Escherichia coli O157:H7. Infect Immun70:3500–3509 [CrossRef][PubMed]
    [Google Scholar]
  2. Akashi S., Joh K., Mori T., Tsuji A., Ito H., Hoshi H., Hayakawa T., Ihara J., Abe T. et al.& other authors ( 1994;). A severe outbreak of haemorrhagic colitis and haemolytic uraemic syndrome associated with Escherichia coli O157:H7 in Japan. Eur J Pediatr153:650–655 [CrossRef][PubMed]
    [Google Scholar]
  3. Berin M. C., Darfeuille-Michaud A., Egan L. J., Miyamoto Y., Kagnoff M. F..( 2002;). Role of EHEC O157 : H7 virulence factors in the activation of intestinal epithelial cell NF-κB and MAP kinase pathways and the upregulated expression of interleukin 8. Cell Microbiol4:635–648 [CrossRef][PubMed]
    [Google Scholar]
  4. Bustamante V. H., Santana F. J., Calva E., Puente J. L..( 2001;). Transcriptional regulation of type III secretion genes in enteropathogenic Escherichia coli: Ler antagonizes H-NS-dependent repression. Mol Microbiol39:664–678 [CrossRef][PubMed]
    [Google Scholar]
  5. Cherepanov P. P., Wackernagel W..( 1995;). Gene disruption in Escherichia coli: TcR and KmR cassettes with the option of Flp-catalyzed excision of the antibiotic-resistance determinant. Gene158:9–14 [CrossRef][PubMed]
    [Google Scholar]
  6. Cummings L. A., Wilkerson W. D., Bergsbaken T., Cookson B. T..( 2006;). In vivo, fliC expression by Salmonella enterica serovar Typhimurium is heterogeneous, regulated by ClpX, and anatomically restricted. Mol Microbiol61:795–809 [CrossRef][PubMed]
    [Google Scholar]
  7. Datsenko K. A., Wanner B. L..( 2000;). One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc Natl Acad Sci U S A97:6640–6645 [CrossRef][PubMed]
    [Google Scholar]
  8. Deng W., Puente J. L., Gruenheid S., Li Y., Vallance B. A., Vázquez A., Barba J., Ibarra J. A., O’Donnell P. et al.& other authors ( 2004;). Dissecting virulence: systematic and functional analyses of a pathogenicity island. Proc Natl Acad Sci U S A101:3597–3602 [CrossRef][PubMed]
    [Google Scholar]
  9. Donnenberg M. S., Kaper J. B..( 1991;). Construction of an eae deletion mutant of enteropathogenic Escherichia coli by using a positive-selection suicide vector. Infect Immun59:4310–4317[PubMed]
    [Google Scholar]
  10. Fontaine F., Stewart E. J., Lindner A. B., Taddei F..( 2008;). Mutations in two global regulators lower individual mortality in Escherichia coli. Mol Microbiol67:2–14[PubMed]
    [Google Scholar]
  11. Francez-Charlot A., Laugel B., Van Gemert A., Dubarry N., Wiorowski F., Castanié-Cornet M. P., Gutierrez C., Cam K..( 2003;). RcsCDB His–Asp phosphorelay system negatively regulates the flhDC operon in Escherichia coli. Mol Microbiol49:823–832 [CrossRef][PubMed]
    [Google Scholar]
  12. Friedberg D., Umanski T., Fang Y., Rosenshine I..( 1999;). Hierarchy in the expression of the locus of enterocyte effacement genes of enteropathogenic Escherichia coli. Mol Microbiol34:941–952 [CrossRef][PubMed]
    [Google Scholar]
  13. Gamer J., Bujard H., Bukau B..( 1992;). Physical interaction between heat shock proteins DnaK, DnaJ, and GrpE and the bacterial heat shock transcription factor σ32. Cell69:833–842 [CrossRef][PubMed]
    [Google Scholar]
  14. Gottesman S., Roche E., Zhou Y., Sauer R. T..( 1998;). The ClpXP and ClpAP proteases degrade proteins with carboxy-terminal peptide tails added by the SsrA-tagging system. Genes Dev12:1338–1347 [CrossRef][PubMed]
    [Google Scholar]
  15. Grant A. J., Farris M., Alefounder P., Williams P. H., Woodward M. J., O’Connor C. D..( 2003;). Co-ordination of pathogenicity island expression by the BipA GTPase in enteropathogenic Escherichia coli (EPEC). Mol Microbiol48:507–521 [CrossRef][PubMed]
    [Google Scholar]
  16. Habdas B. J., Smart J., Kaper J. B., Sperandio V..( 2010;). The LysR-type transcriptional regulator QseD alters type three secretion in enterohemorrhagic Escherichia coli and motility in K-12 Escherichia coli. J Bacteriol192:3699–3712 [CrossRef][PubMed]
    [Google Scholar]
  17. Iyoda S., Watanabe H..( 2005;). ClpXP protease controls expression of the type III protein secretion system through regulation of RpoS and GrlR levels in enterohemorrhagic Escherichia coli. J Bacteriol187:4086–4094 [CrossRef][PubMed]
    [Google Scholar]
  18. Iyoda S., Koizumi N., Satou H., Lu Y., Saitoh T., Ohnishi M., Watanabe H..( 2006;). The GrlR–GrlA regulatory system coordinately controls the expression of flagellar and LEE-encoded type III protein secretion systems in enterohemorrhagic Escherichia coli. J Bacteriol188:5682–5692 [CrossRef][PubMed]
    [Google Scholar]
  19. Lehnen D., Blumer C., Polen T., Wackwitz B., Wendisch V. F., Unden G..( 2002;). LrhA as a new transcriptional key regulator of flagella, motility and chemotaxis genes in Escherichia coli. Mol Microbiol45:521–532 [CrossRef][PubMed]
    [Google Scholar]
  20. Macnab R. M..( 1996;). Flagella and motility. Escherichia coli and Salmonella: Cellular and Molecular Biology, 2nd edn.123–145 Neidhardt F. C., Curtiss R. III, Ingraham H. L., Lin E. C. C., Low K. B., Magasanik B., Reznikoff W. S., Riley M., Schaechter M., Umbarger H. E.. Washington, D.C.: American Society for Microbiology;
    [Google Scholar]
  21. Macnab R. M..( 2003;). How bacteria assemble flagella. Annu Rev Microbiol57:77–100 [CrossRef][PubMed]
    [Google Scholar]
  22. Mahajan A., Currie C. G., Mackie S., Tree J., McAteer S., McKendrick I., McNeilly T. N., Roe A., La Ragione R. M. et al.& other authors ( 2009;). An investigation of the expression and adhesin function of H7 flagella in the interaction of Escherichia coli O157 : H7 with bovine intestinal epithelium. Cell Microbiol11:121–137 [CrossRef][PubMed]
    [Google Scholar]
  23. Ortega J., Singh S. K., Ishikawa T., Maurizi M. R., Steven A. C..( 2000;). Visualization of substrate binding and translocation by the ATP-dependent protease, ClpXP. Mol Cell6:1515–1521 [CrossRef][PubMed]
    [Google Scholar]
  24. Schneider K., Beck C. F..( 1986;). Promoter-probe vectors for the analysis of divergently arranged promoters. Gene42:37–48 [CrossRef][PubMed]
    [Google Scholar]
  25. Shi W., Li C., Louise C. J., Adler J..( 1993;). Mechanism of adverse conditions causing lack of flagella in Escherichia coli. J Bacteriol175:2236–2240[PubMed]
    [Google Scholar]
  26. Shin S., Park C..( 1995;). Modulation of flagellar expression in Escherichia coli by acetyl phosphate and the osmoregulator OmpR. J Bacteriol177:4696–4702[PubMed]
    [Google Scholar]
  27. Soutourina O., Kolb A., Krin E., Laurent-Winter C., Rimsky S., Danchin A., Bertin P..( 1999;). Multiple control of flagellum biosynthesis in Escherichia coli: role of H-NS protein and the cyclic AMP-catabolite activator protein complex in transcription of the flhDC master operon. J Bacteriol181:7500–7508[PubMed]
    [Google Scholar]
  28. Soutourina O. A., Krin E., Laurent-Winter C., Hommais F., Danchin A., Bertin P. N..( 2002;). Regulation of bacterial motility in response to low pH in Escherichia coli: the role of H-NS protein. Microbiology148:1543–1551[PubMed]
    [Google Scholar]
  29. Sperandio V., Torres A. G., Kaper J. B..( 2002;). Quorum sensing Escherichia coli regulators B and C (QseBC): a novel two-component regulatory system involved in the regulation of flagella and motility by quorum sensing in E. coli. Mol Microbiol43:809–821 [CrossRef][PubMed]
    [Google Scholar]
  30. Takaya A., Matsui M., Tomoyasu T., Kaya M., Yamamoto T..( 2006;). The DnaK chaperone machinery converts the native FlhD2C2 hetero-tetramer into a functional transcriptional regulator of flagellar regulon expression in Salmonella. Mol Microbiol59:1327–1340 [CrossRef][PubMed]
    [Google Scholar]
  31. Tomoyasu T., Ohkishi T., Ukyo Y., Tokumitsu A., Takaya A., Suzuki M., Sekiya K., Matsui H., Kutsukake K., Yamamoto T..( 2002;). The ClpXP ATP-dependent protease regulates flagellum synthesis in Salmonella enterica serovar typhimurium. J Bacteriol184:645–653 [CrossRef][PubMed]
    [Google Scholar]
  32. Tomoyasu T., Takaya A., Isogai E., Yamamoto T..( 2003;). Turnover of FlhD and FlhC, master regulator proteins for Salmonella flagellum biogenesis, by the ATP-dependent ClpXP protease. Mol Microbiol48:443–452 [CrossRef][PubMed]
    [Google Scholar]
  33. Tomoyasu T., Takaya A., Handa Y., Karata K., Yamamoto T..( 2005;). ClpXP controls the expression of LEE genes in enterohaemorrhagic Escherichia coli. FEMS Microbiol Lett253:59–66 [CrossRef][PubMed]
    [Google Scholar]
  34. Umanski T., Rosenshine I., Friedberg D..( 2002;). Thermoregulated expression of virulence genes in enteropathogenic Escherichia coli. Microbiology148:2735–2744[PubMed]
    [Google Scholar]
  35. Vazquez-Juarez R. C., Kuriakose J. A., Rasko D. A., Ritchie J. M., Kendall M. M., Slater T. M., Sinha M., Luxon B. A., Popov V. L. et al.& other authors ( 2008;). CadA negatively regulates Escherichia coli O157 : H7 adherence and intestinal colonization. Infect Immun76:5072–5081 [CrossRef][PubMed]
    [Google Scholar]
  36. Wada T., Morizane T., Abo T., Tominaga A., Inoue-Tanaka K., Kutsukake K..( 2011;). EAL domain protein YdiV acts as an anti-FlhD4C2 factor responsible for nutritional control of the flagellar regulon in Salmonella enterica serovar Typhimurium. J Bacteriol193:1600–1611 [CrossRef][PubMed]
    [Google Scholar]
  37. Wei B. L., Brun-Zinkernagel A. M., Simecka J. W., Prüß B. M., Babitzke P., Romeo T..( 2001;). Positive regulation of motility and flhDC expression by the RNA-binding protein CsrA of Escherichia coli. Mol Microbiol40:245–256 [CrossRef][PubMed]
    [Google Scholar]
  38. Wozniak C. E., Lee C., Hughes K. T..( 2009;). T-POP array identifies EcnR and PefI–SrgD as novel regulators of flagellar gene expression. J Bacteriol191:1498–1508 [CrossRef][PubMed]
    [Google Scholar]
  39. Yona-Nadler C., Umanski T., Aizawa S., Friedberg D., Rosenshine I..( 2003;). Integration host factor (IHF) mediates repression of flagella in enteropathogenic and enterohaemorrhagic Escherichia coli. Microbiology149:877–884 [CrossRef][PubMed]
    [Google Scholar]
  40. Zhou Y., Gottesman S., Hoskins J. R., Maurizi M. R., Wickner S..( 2001;). The RssB response regulator directly targets σS for degradation by ClpXP. Genes Dev15:627–637 [CrossRef][PubMed]
    [Google Scholar]
  41. Zhou X., Girón J. A., Torres A. G., Crawford J. A., Negrete E., Vogel S. N., Kaper J. B..( 2003;). Flagellin of enteropathogenic Escherichia coli stimulates interleukin-8 production in T84 cells. Infect Immun71:2120–2129 [CrossRef][PubMed]
    [Google Scholar]
  42. Zhou X., Meng X., Sun B..( 2008;). An EAL domain protein and cyclic AMP contribute to the interaction between the two quorum sensing systems in Escherichia coli. Cell Res18:937–948 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.051151-0
Loading
/content/journal/micro/10.1099/mic.0.051151-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error