1887

Abstract

-associated bloodstream infections are linked to the ability of this yeast to form biofilms. In this study, we used lipidomics to compare the lipid profiles of biofilms and planktonic cells, in early and mature developmental phases. Our results showed that significant differences exist in lipid composition in both developmental phases. Biofilms contained higher levels of phospholipid and sphingolipids than planktonic cells (nmol per g biomass, <0.05 for all comparisons). In the early phase, levels of lipid in most classes were significantly higher in biofilms compared to planktonic cells (≤0.05). The ratio of phosphatidylcholine to phosphatidylethanolamine was lower in biofilms compared to planktonic cells in both early (1.17 vs 2.52, ≤0.001) and late (2.34 vs 3.81, ≤0.001) developmental phases. The unsaturation index of phospholipids decreased with time, with this effect being particularly strong for biofilms. Inhibition of the biosynthetic pathway for sphingolipid [mannosyl diinositolphosphoryl ceramide, M(IP)C] by myriocin or aureobasidin A, and disruption of the gene encoding inositolphosphotransferase (Ipt1p), abrogated the ability of to form biofilms. The differences in lipid profiles between biofilms and planktonic cells may have important implications for the biology and antifungal resistance of biofilms.

Funding
This study was supported by the:
  • NIH/NIAID (Award RO1 AI035097)
  • NIH/NIDCR (Award R01DE 13932-4 and R01 DE017486-01A1)
  • NIH/NIAID (Award R21AI074077-01A2)
  • National Science Foundation (Award DBI 0521587, 0920663, MCB 0455318 and EPS 0236913)
  • Kansas Technology Enterprise Corporation
  • National Institutes of Health (Award P20RR16475)
  • Kansas State University
Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.051086-0
2011-11-01
2024-04-23
Loading full text...

Full text loading...

/deliver/fulltext/micro/157/11/3232.html?itemId=/content/journal/micro/10.1099/mic.0.051086-0&mimeType=html&fmt=ahah

References

  1. Abu-Elteen K. H., Whittaker P. A. ( 1997-1998). Effect of sub-inhibitory concentration of chlorhexidine on lipid and sterol composition of Candida albicans. Mycopathologia 140:69–76 [View Article][PubMed]
    [Google Scholar]
  2. Aeed P. A., Young C. L., Nagiec M. M., Elhammer A. P. ( 2009). Inhibition of inositol phosphorylceramide synthase by the cyclic peptide aureobasidin A. Antimicrob Agents Chemother 53:496–504 [View Article][PubMed]
    [Google Scholar]
  3. Ansari S., Prasad R. ( 1993). Effect of miconazole on the structure and function of plasma membrane of Candida albicans. FEMS Microbiol Lett 114:93–98 [View Article][PubMed]
    [Google Scholar]
  4. Brügger B., Erben G., Sandhoff R., Wieland F. T., Lehmann W. D. ( 1997). Quantitative analysis of biological membrane lipids at the low picomole level by nano-electrospray ionization tandem mass spectrometry. Proc Natl Acad Sci U S A 94:2339–2344 [View Article][PubMed]
    [Google Scholar]
  5. Cerantola V., Guillas I., Roubaty C., Vionnet C., Uldry D., Knudsen J., Conzelmann A. ( 2009). Aureobasidin A arrests growth of yeast cells through both ceramide intoxication and deprivation of essential inositolphosphorylceramides. Mol Microbiol 71:1523–1537 [View Article][PubMed]
    [Google Scholar]
  6. Chandra J., McCormick T. S., Imamura Y., Mukherjee P. K., Ghannoum M. A. ( 2007). Interaction of Candida albicans with adherent human peripheral blood mononuclear cells increases C. albicans biofilm formation and results in differential expression of pro- and anti-inflammatory cytokines. Infect Immun 75:2612–2620 [View Article][PubMed]
    [Google Scholar]
  7. Chandra J., Mukherjee P. K., Ghannoum M. A. ( 2008). In vitro growth and analysis of Candida biofilms. Nat Protoc 3:1909–1924 [View Article][PubMed]
    [Google Scholar]
  8. Chen Y. L., Montedonico A. E., Kauffman S., Dunlap J. R., Menn F. M., Reynolds T. B. ( 2010). Phosphatidylserine synthase and phosphatidylserine decarboxylase are essential for cell wall integrity and virulence in Candida albicans. Mol Microbiol 75:1112–1132 [View Article][PubMed]
    [Google Scholar]
  9. Devaiah S. P., Roth M. R., Baughman E., Li M., Tamura P., Jeannotte R., Welti R., Wang X. ( 2006). Quantitative profiling of polar glycerolipid species from organs of wild-type Arabidopsis and a phospholipase Dalpha1 knockout mutant. Phytochemistry 67:1907–1924 [View Article][PubMed]
    [Google Scholar]
  10. Dickson R. C., Nagiec E. E., Wells G. B., Nagiec M. M., Lester R. L. ( 1997). Synthesis of mannose-(inositol-P)2-ceramide, the major sphingolipid in Saccharomyces cerevisiae, requires the IPT1 (YDR072c) gene. J Biol Chem 272:29620–29625 [View Article][PubMed]
    [Google Scholar]
  11. Dudani A. K., Prasad R. ( 1985). Differences in amino acid transport and phospholipid contents during the cell cycle of Candida albicans. Folia Microbiol (Praha) 30:493–500 [View Article][PubMed]
    [Google Scholar]
  12. Ghannoum M. A., Burns G. R., Elteen K. A., Radwan S. S. ( 1986). Experimental evidence for the role of lipids in adherence of Candida spp. to human buccal epithelial cells. Infect Immun 54:189–193[PubMed]
    [Google Scholar]
  13. Ghannoum M. A., Swairjo I., Soll D. R. ( 1990). Variation in lipid and sterol contents in Candida albicans white and opaque phenotypes. J Med Vet Mycol 28:103–115 [View Article][PubMed]
    [Google Scholar]
  14. Hallstrom T. C., Lambert L., Schorling S., Balzi E., Goffeau A., Moye-Rowley W. S. ( 2001). Coordinate control of sphingolipid biosynthesis and multidrug resistance in Saccharomyces cerevisiae. J Biol Chem 276:23674–23680 [View Article][PubMed]
    [Google Scholar]
  15. Hitchcock C. A., Barrett-Bee K. J., Russell N. J. ( 1986). The lipid composition of azole-sensitive and azole-resistant strains of Candida albicans. J Gen Microbiol 132:2421–2431[PubMed]
    [Google Scholar]
  16. Hitchcock C. A., Barrett-Bee K. J., Russell N. J. ( 1987). The lipid composition and permeability to azole of an azole- and polyene-resistant mutant of Candida albicans. J Med Vet Mycol 25:29–37 [View Article][PubMed]
    [Google Scholar]
  17. Ibrahim A. S., Ghannoum M. A., Prasad R. ( 1996). Chromatographic analysis of lipids. Manual on Membrane Lipids52 Prasad R. New York: Springer-Verlag;
    [Google Scholar]
  18. Koul A., Chandra J., Prasad R. ( 1995). Status of membrane lipids and amino acid transport in morphological mutants of Candida albicans. Biochem Mol Biol Int 35:1215–1222[PubMed]
    [Google Scholar]
  19. Lattif A. A., Chandra J., Chang J., Liu S., Zhou G., Chance M. R., Ghannoum M. A., Mukherjee P. K. ( 2008). Proteomic and pathway analyses reveal phase-dependent over-expression of proteins associated with carbohydrate metabolic pathways in Candida albicans biofilms. The Open Proteomics Journal 1:5–26 [View Article]
    [Google Scholar]
  20. Lomb M., Fryberg M., Oehlschlager A. C., Unrau A. M. ( 1975). Sterol and fatty acid composition of polyene macrolide antibiotic resistant Torulopsis glabrata. Can J Biochem 53:1309–1315 [View Article][PubMed]
    [Google Scholar]
  21. Mago N., Khuller G. K. ( 1989). Influence of lipid composition on the sensitivity of Candida albicans to antifungal agents. Indian J Biochem Biophys 26:30–33[PubMed]
    [Google Scholar]
  22. Martin S. W., Konopka J. B. ( 2004). Lipid raft polarization contributes to hyphal growth in Candida albicans. Eukaryot Cell 3:675–684 [View Article][PubMed]
    [Google Scholar]
  23. Mukherjee P. K., Chandra J., Kuhn D. M., Ghannoum M. A. ( 2003). Mechanism of fluconazole resistance in Candida albicans biofilms: phase-specific role of efflux pumps and membrane sterols. Infect Immun 71:4333–4340 [View Article][PubMed]
    [Google Scholar]
  24. Mukherjee P. K., Zhou G., Munyon R., Ghannoum M. A. ( 2005). Candida biofilm: a well-designed protected environment. Med Mycol 43:191–208 [View Article][PubMed]
    [Google Scholar]
  25. Nagiec M. M., Nagiec E. E., Baltisberger J. A., Wells G. B., Lester R. L., Dickson R. C. ( 1997). Sphingolipid synthesis as a target for antifungal drugs. Complementation of the inositol phosphorylceramide synthase defect in a mutant strain of Saccharomyces cerevisiae by the AUR1 gene. J Biol Chem 272:9809–9817 [View Article][PubMed]
    [Google Scholar]
  26. Pasrija R., Panwar S. L., Prasad R. ( 2008). Multidrug transporters CaCdr1p and CaMdr1p of Candida albicans display different lipid specificities: both ergosterol and sphingolipids are essential for targeting of CaCdr1p to membrane rafts. Antimicrob Agents Chemother 52:694–704 [View Article][PubMed]
    [Google Scholar]
  27. Pesti M., Horváth L., Vígh L., Farkas T. ( 1985). Lipid content and ESR determination of plasma membrane order parameter in Candida albicans sterol mutants. Acta Microbiol Hung 32:305–313[PubMed]
    [Google Scholar]
  28. Prasad T., Saini P., Gaur N. A., Vishwakarma R. A., Khan L. A., Haq Q. M., Prasad R. ( 2005). Functional analysis of CaIPT1, a sphingolipid biosynthetic gene involved in multidrug resistance and morphogenesis of Candida albicans. Antimicrob Agents Chemother 49:3442–3452 [View Article][PubMed]
    [Google Scholar]
  29. Reynolds T. B. ( 2009). Strategies for acquiring the phospholipid metabolite inositol in pathogenic bacteria, fungi and protozoa: making it and taking it. Microbiology 155:1386–1396 [View Article][PubMed]
    [Google Scholar]
  30. Siafakas A. R., Wright L. C., Sorrell T. C., Djordjevic J. T. ( 2006). Lipid rafts in Cryptococcus neoformans concentrate the virulence determinants phospholipase B1 and Cu/Zn superoxide dismutase. Eukaryot Cell 5:488–498 [View Article][PubMed]
    [Google Scholar]
  31. Singh M., Jayakumar A., Prasad R. ( 1978). The effect of altered lipid composition on the transport of various amino acids in Candida albicans. Arch Biochem Biophys 191:680–686 [View Article][PubMed]
    [Google Scholar]
  32. Singh A., Prasad T., Kapoor K., Mandal A., Roth M., Welti R., Prasad R. ( 2010). Phospholipidome of Candida: each species of Candida has distinctive phospholipid molecular species. OMICS 14:665–677 [View Article][PubMed]
    [Google Scholar]
  33. Thevissen K., Cammue B. P., Lemaire K., Winderickx J., Dickson R. C., Lester R. L., Ferket K. K., Van Even F., Parret A. H., Broekaert W. F. ( 2000). A gene encoding a sphingolipid biosynthesis enzyme determines the sensitivity of Saccharomyces cerevisiae to an antifungal plant defensin from dahlia (Dahlia merckii). Proc Natl Acad Sci U S A 97:9531–9536 [View Article][PubMed]
    [Google Scholar]
  34. Thevissen K., Francois I. E., Aerts A. M., Cammue B. P. ( 2005). Fungal sphingolipids as targets for the development of selective antifungal therapeutics. Curr Drug Targets 6:923–928 [View Article][PubMed]
    [Google Scholar]
  35. Toulmay A., Schneiter R. ( 2007). Lipid-dependent surface transport of the proton pumping ATPase: a model to study plasma membrane biogenesis in yeast. Biochimie 89:249–254 [View Article][PubMed]
    [Google Scholar]
  36. Wachtler V., Balasubramanian M. K. ( 2006). Yeast lipid rafts? – an emerging view. Trends Cell Biol 16:1–4 [View Article][PubMed]
    [Google Scholar]
  37. Welti R., Li W., Li M., Sang Y., Biesiada H., Zhou H. E., Rajashekar C. B., Williams T. D., Wang X. ( 2002). Profiling membrane lipids in plant stress responses. Role of phospholipase D alpha in freezing-induced lipid changes in Arabidopsis. J Biol Chem 277:31994–32002 [View Article][PubMed]
    [Google Scholar]
  38. Yeater K. M., Chandra J., Cheng G., Mukherjee P. K., Zhao X., Rodriguez-Zas S. L., Kwast K. E., Ghannoum M. A., Hoyer L. L. ( 2007). Temporal analysis of Candida albicans gene expression during biofilm development. Microbiology 153:2373–2385 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.051086-0
Loading
/content/journal/micro/10.1099/mic.0.051086-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error