1887

Abstract

Atomic force microscopy was used to investigate the surface ultrastructure, adhesive properties and biofilm formation of and a mutant strain. The surface ultrastructure of wild-type consists of tightly packed surface subunits, whereas the mutant has much larger subunits with loose lateral packing. The mutant strain is not capable of developing fully mature biofilms, consistent with its altered surface ultrastructure, greater roughness and stronger adhesion to hydrophilic surfaces. For both strains, surface roughness and adhesive forces increased as a function of calcium ion concentration, and for each, biofilms were thicker at higher calcium concentrations.

Funding
This study was supported by the:
  • National Science and Engineering Research Council (NSERC) (Award 288281-2011 and 228206-07)
  • Faculty of
  • Graduate Studies and Research (University of Regina)
  • NSERC
  • Undergraduate Student Research Assistantship
  • Canada Graduate Scholarship
Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.051045-0
2011-11-01
2024-04-19
Loading full text...

Full text loading...

/deliver/fulltext/micro/157/11/3049.html?itemId=/content/journal/micro/10.1099/mic.0.051045-0&mimeType=html&fmt=ahah

References

  1. Alsteens D., Duprés V., Klotz S. A., Gaur N. K., Lipke P. N., Dufrêne Y. F. ( 2009). Unfolding individual Als5p adhesion proteins on live cells. ACS Nano 3:1677–1682 [View Article][PubMed]
    [Google Scholar]
  2. Bandara A. B., Sriranganathan N., Schurig G. G., Boyle S. M. ( 2005). Carboxyl-terminal protease regulates Brucella suis morphology in culture and persistence in macrophages and mice. J Bacteriol 187:5767–5775 [View Article][PubMed]
    [Google Scholar]
  3. Bandara H. M., Lam O. L., Watt R. M., Jin L. J., Samaranayake L. P. ( 2010). Bacterial lipopolysaccharides modulate in vitro biofilm formation of Candida species. J Med Microbiol 59:1225–1234 [View Article][PubMed]
    [Google Scholar]
  4. Beringer J. E. ( 1974). R factor transfer in Rhizobium leguminosarum . J Gen Microbiol 84:188–198[PubMed] [CrossRef]
    [Google Scholar]
  5. Borthakur D., Barber C. E., Lamb J. W., Daniels M. J., Downie J. A., Johnston A. W. B. ( 1986). A mutation that blocks exopolysaccharide synthesis prevents nodulation of peas by Rhizobium leguminosarum but not of beans by R. phaseolii and is corrected by cloned DNA from Rhizobium or the phytopathogen Xanthomonas . Mol Gen Genet 203:320–323 [View Article]
    [Google Scholar]
  6. Butt H. J. ( 1991a). Electrostatic interaction in atomic force microscopy. Biophys J 60:777–785 [View Article][PubMed]
    [Google Scholar]
  7. Butt H. J. ( 1991b). Measuring electrostatic, van der Waals, and hydration forces in electrolyte solutions with an atomic force microscope. Biophys J 60:1438–1444 [View Article][PubMed]
    [Google Scholar]
  8. Carlson R. W., Reuhs B. L., Forsberg L. S., Kannenberg E. L. ( 1999). Rhizobial cell surface carbohydrates: their structures, biosynthesis and functions. Genetics of Bacterial Polysaccharides53–90 Goldberg J. B. Boca Raton: CRC Press;
    [Google Scholar]
  9. Chen J. L., Lin S., Lin L. P. ( 2006). Rhizobial surface biopolymers and their interaction with lectin measured by atomic force microscopy. World J Microb Biot 22:565–570 [View Article]
    [Google Scholar]
  10. Cleveland J. P., Manne S., Bocek D., Hansma P. K. ( 1993). Nondestructive method for determining the spring constant of cantilevers for scanning force microscopy. Rev Sci Instrum 64:403–405 [View Article]
    [Google Scholar]
  11. Crawford R. W., Reeve K. E., Gunn J. S. ( 2010). Flagellated but not hyperfimbriated Salmonella enterica serovar Typhimurium attaches to and forms biofilms on cholesterol-coated surfaces. J Bacteriol 192:2981–2990 [View Article][PubMed]
    [Google Scholar]
  12. Dardanelli M., Angelini J., Fabra A. ( 2003). A calcium-dependent bacterial surface protein is involved in the attachment of rhizobia to peanut roots. Can J Microbiol 49:399–405 [View Article][PubMed]
    [Google Scholar]
  13. de Maagd R. A., de Rijk R., Mulders I. H., Lugtenberg B. J. ( 1989a). Immunological characterization of Rhizobium leguminosarum outer membrane antigens by use of polyclonal and monoclonal antibodies. J Bacteriol 171:1136–1142[PubMed]
    [Google Scholar]
  14. de Maagd R. A., Wientjes F. B., Lugtenberg B. J. ( 1989b). Evidence for divalent cation (Ca2+)-stabilized oligomeric proteins and covalently bound protein-peptidoglycan complexes in the outer membrane of Rhizobium leguminosarum . J Bacteriol 171:3989–3995[PubMed]
    [Google Scholar]
  15. Díaz C., Schilardi P. L., Salvarezza R. C., Fernández Lorenzo de Mele M. ( 2011). Have flagella a preferred orientation during early stages of biofilm formation? AFM study using patterned substrates. Colloids Surf B Biointerfaces 82:536–542 [View Article][PubMed]
    [Google Scholar]
  16. Dorobantu L. S., Gray M. R. ( 2010). Application of atomic force microscopy in bacterial research. Scanning 32:74–96 [View Article][PubMed]
    [Google Scholar]
  17. Fey P. D., Olson M. E. ( 2010). Current concepts in biofilm formation of Staphylococcus epidermidis . Future Microbiol 5:917–933 [View Article][PubMed]
    [Google Scholar]
  18. Fujishige N. A., Kapadia N. N., De Hoff P. L., Hirsch A. M. ( 2006). Investigations of Rhizobium biofilm formation. FEMS Microbiol Ecol 56:195–206 [View Article][PubMed]
    [Google Scholar]
  19. Gilbert K. B., Vanderlinde E. M., Yost C. K. ( 2007). Mutagenesis of the carboxy terminal protease CtpA decreases desiccation tolerance in Rhizobium leguminosarum . FEMS Microbiol Lett 272:65–74 [View Article][PubMed]
    [Google Scholar]
  20. Habimana O., Le Goff C., Juillard V., Bellon-Fontaine M. N., Buist G., Kulakauskas S., Briandet R. ( 2007). Positive role of cell wall anchored proteinase PrtP in adhesion of lactococci. BMC Microbiol 7:36 [View Article][PubMed]
    [Google Scholar]
  21. Hara H., Nishimura Y., Kato J., Suzuki H., Nagasawa H., Suzuki A., Hirota Y. ( 1989). Genetic analyses of processing involving C-terminal cleavage in penicillin-binding protein 3 of Escherichia coli . J Bacteriol 171:5882–5889[PubMed]
    [Google Scholar]
  22. Hara H., Yamamoto Y., Higashitani A., Suzuki H., Nishimura Y. ( 1991). Cloning, mapping, and characterization of the Escherichia coli prc gene, which is involved in C-terminal processing of penicillin-binding protein 3. J Bacteriol 173:4799–4813[PubMed]
    [Google Scholar]
  23. Heinisch J. J., Duprés V., Alsteens D., Dufrêne Y. F. ( 2010). Measurement of the mechanical behavior of yeast membrane sensors using single-molecule atomic force microscopy. Nat Protoc 5:670–677 [View Article][PubMed]
    [Google Scholar]
  24. Hoge R., Laschinski M., Jaeger K. E., Wilhelm S., Rosenau F. ( 2011). The subcellular localization of a C-terminal processing protease in Pseudomonas aeruginosa . FEMS Microbiol Lett 316:23–30 [View Article][PubMed]
    [Google Scholar]
  25. Hu M., Wang J., Zhao H., Dong S., Cai J. ( 2009). Nanostructure and nanomechanics analysis of lymphocyte using AFM: from resting, activated to apoptosis. J Biomech 42:1513–1519 [View Article][PubMed]
    [Google Scholar]
  26. Humphrey B., Vincent J. M. ( 1962). Calcium in cell walls of Rhizobium trifolii . J Gen Microbiol 29:557–561[PubMed] [CrossRef]
    [Google Scholar]
  27. Johnston A. W., Beringer J. E. ( 1975). Identification of the rhizobium strains in pea root nodules using genetic markers. J Gen Microbiol 87:343–350[PubMed] [CrossRef]
    [Google Scholar]
  28. Kaminskyj S. G. W., Dahms T. E. S. ( 2008). High spatial resolution surface imaging and analysis of fungal cells using SEM and AFM. Micron 39:349–361 [View Article][PubMed]
    [Google Scholar]
  29. Kim W. S., Sun-Hyung J., Park R. D., Kim K. Y., Krishnan H. B. ( 2005). Sinorhizobium fredii USDA257 releases a 22-kDa outer membrane protein (Omp22) to the extracellular milieu when grown in calcium-limiting conditions. Mol Plant Microbe Interact 18:808–818 [View Article][PubMed]
    [Google Scholar]
  30. Lepek V. C., D’Antuono A. L. ( 2005). Bacterial surface polysaccharides and their role in the rhizobia–legume association. Lotus Newsletter 35:93–105
    [Google Scholar]
  31. Ma H., Snook L. A., Kaminskyj S. G. W., Dahms T. E. S. ( 2005). Surface ultrastructure and elasticity in growing tips and mature regions of Aspergillus hyphae describe wall maturation. Microbiology 151:3679–3688 [View Article][PubMed]
    [Google Scholar]
  32. Ma H., Snook L. A., Tian C., Kaminskyj S. G. W., Dahms T. E. S. ( 2006). Fungal surface remodelling visualized by atomic force microscopy. Mycol Res 110:879–886 [View Article][PubMed]
    [Google Scholar]
  33. Manetti A. G., Zingaretti C., Falugi F., Capo S., Bombaci M., Bagnoli F., Gambellini G., Bensi G., Mora M. et al. & other authors ( 2007). Streptococcus pyogenes pili promote pharyngeal cell adhesion and biofilm formation. Mol Microbiol 64:968–983 [View Article][PubMed]
    [Google Scholar]
  34. Miller E., Garcia T., Hultgren S., Oberhauser A. F. ( 2006). The mechanical properties of E. coli type 1 pili measured by atomic force microscopy techniques. Biophys J 91:3848–3856 [View Article][PubMed]
    [Google Scholar]
  35. Mongiardini E. J., Ausmees N., Pérez-Giménez J., Julia Althabegoiti M., Ignacio Quelas J., López-García S. L., Lodeiro A. R. ( 2008). The rhizobial adhesion protein RapA1 is involved in adsorption of rhizobia to plant roots but not in nodulation. FEMS Microbiol Ecol 65:279–288 [View Article][PubMed]
    [Google Scholar]
  36. O’Neill M. A., Darvill A. G., Albersheim P. ( 1991). The degree of esterification and points of substitution by O-acetyl and O-(3-hydroxybutanoyl) groups in the acidic extracellular polysaccharides secreted by Rhizobium leguminosarum biovars viciae, trifolii, and phaseoli are not related to host range. J Biol Chem 266:9549–9555[PubMed]
    [Google Scholar]
  37. O’Toole G. A., Kolter R. ( 1998). Flagellar and twitching motility are necessary for Pseudomonas aeruginosa biofilm development. Mol Microbiol 30:295–304 [View Article][PubMed]
    [Google Scholar]
  38. Otto M. ( 2008). Staphylococcal biofilms. Curr Top Microbiol Immunol 322:207–228 [View Article][PubMed]
    [Google Scholar]
  39. Paul B. C., El-Ganiny A. M., Abbas M., Kaminskyj S. G. W., Dahms T. E. S. ( 2011). Quantifying the importance of galactofuranose in Aspergillus nidulans hyphal wall surface organization by atomic force microscopy. Eukaryot Cell 10:646–653 [View Article][PubMed]
    [Google Scholar]
  40. Pinne M., Denker K., Nilsson E., Benz R., Bergström S. ( 2006). The BBA01 protein, a member of paralog family 48 from Borrelia burgdorferi, is potentially interchangeable with the channel-forming protein P13. J Bacteriol 188:4207–4217 [View Article][PubMed]
    [Google Scholar]
  41. Reis Y., Cortes H., Viseu Melo L., Fazendeiro I., Leitão A., Soares H. ( 2006). Microtubule cytoskeleton behavior in the initial steps of host cell invasion by Besnoitia besnoiti . FEBS Lett 580:4673–4682 [View Article][PubMed]
    [Google Scholar]
  42. Robertsen B. K., Aman P., Darvill A. G., McNeil M., Albersheim P. ( 1981). Host–symbiont interactions: V. The structure of acidic extracellular polysaccharides secreted by Rhizobium leguminosarum and Rhizobium trifolii . Plant Physiol 67:389–400 [View Article][PubMed]
    [Google Scholar]
  43. Russo D. M., Williams A., Edwards A., Posadas D. M., Finnie C., Dankert M., Downie J. A., Zorreguieta A. ( 2006). Proteins exported via the PrsD–PrsE type I secretion system and the acidic exopolysaccharide are involved in biofilm formation by Rhizobium leguminosarum . J Bacteriol 188:4474–4486 [View Article][PubMed]
    [Google Scholar]
  44. Silhavy T. J., Kahne D., Walker S. ( 2010). The bacterial cell envelope. Cold Spring Harb Perspect Biol 2:a000414 [View Article][PubMed]
    [Google Scholar]
  45. Skorupska A., Janczarek M., Marczak M., Mazur A., Król J. ( 2006). Rhizobial exopolysaccharides: genetic control and symbiotic functions. Microb Cell Fact 5:7 [View Article][PubMed]
    [Google Scholar]
  46. Smit G., Kijne J. W., Lugtenberg B. J. ( 1987). Involvement of both cellulose fibrils and a Ca2+-dependent adhesin in the attachment of Rhizobium leguminosarum to pea root hair tips. J Bacteriol 169:4294–4301[PubMed]
    [Google Scholar]
  47. Soto M. J., Domínguez-Ferreras A., Pérez-Mendoza D., Sanjuán J., Olivares J. ( 2009). Mutualism versus pathogenesis: the give-and-take in plant–bacteria interactions. Cell Microbiol 11:381–388 [View Article][PubMed]
    [Google Scholar]
  48. Vadillo-Rodriguez V., Schooling S. R., Dutcher J. R. ( 2009). In situ characterization of differences in the viscoelastic response of individual Gram-negative and Gram-positive bacterial cells. J Bacteriol 191:5518–5525 [View Article][PubMed]
    [Google Scholar]
  49. Vanderlinde E. M., Muszynski A., Harrison J. J., Koval S. F., Foreman D. L., Ceri H., Kannenberg E. L., Carlson R. W., Yost C. K. ( 2009). Rhizobium leguminosarum biovar viciae 3841, deficient in 27-hydroxyoctacosanoate-modified lipopolysaccharide, is impaired in desiccation tolerance, biofilm formation and motility. Microbiology 155:3055–3069 [View Article][PubMed]
    [Google Scholar]
  50. Vanderlinde E. M., Harrison J. J., Muszyński A., Carlson R. W., Turner R. J., Yost C. K. ( 2010). Identification of a novel ABC transporter required for desiccation tolerance, and biofilm formation in Rhizobium leguminosarum bv. viciae 3841. FEMS Microbiol Ecol 71:327–340 [View Article][PubMed]
    [Google Scholar]
  51. Vincent V. M. ( 1970). A Manual for the Practical Study of Root-nodule Bacteria (IBP Handbook no. 15) Oxford: Blackwell Scientific Publications;
    [Google Scholar]
  52. Vlassak K. M., Vanderleyden J. ( 1997). Factors influencing nodule occupancy by inoculant rhizobia. Crit Rev Plant Sci 16:163–219 [CrossRef]
    [Google Scholar]
  53. Volle C. B., Ferguson M. A., Aidala K. E., Spain E. M., Núñez M. E. ( 2008). Spring constants and adhesive properties of native bacterial biofilm cells measured by atomic force microscopy. Colloids Surf B Biointerfaces 67:32–40 [View Article][PubMed]
    [Google Scholar]
  54. Vu B., Chen M., Crawford R. J., Ivanova E. P. ( 2009). Bacterial extracellular polysaccharides involved in biofilm formation. Molecules 14:2535–2554 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.051045-0
Loading
/content/journal/micro/10.1099/mic.0.051045-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF

Supplementary material 2

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error