1887

Abstract

Atomic force microscopy was used to investigate the surface ultrastructure, adhesive properties and biofilm formation of and a mutant strain. The surface ultrastructure of wild-type consists of tightly packed surface subunits, whereas the mutant has much larger subunits with loose lateral packing. The mutant strain is not capable of developing fully mature biofilms, consistent with its altered surface ultrastructure, greater roughness and stronger adhesion to hydrophilic surfaces. For both strains, surface roughness and adhesive forces increased as a function of calcium ion concentration, and for each, biofilms were thicker at higher calcium concentrations.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.051045-0
2011-11-01
2020-04-04
Loading full text...

Full text loading...

/deliver/fulltext/micro/157/11/3049.html?itemId=/content/journal/micro/10.1099/mic.0.051045-0&mimeType=html&fmt=ahah

References

  1. Alsteens D., Duprés V., Klotz S. A., Gaur N. K., Lipke P. N., Dufrêne Y. F.. ( 2009;). Unfolding individual Als5p adhesion proteins on live cells. ACS Nano3:1677–1682 [CrossRef][PubMed]
    [Google Scholar]
  2. Bandara A. B., Sriranganathan N., Schurig G. G., Boyle S. M.. ( 2005;). Carboxyl-terminal protease regulates Brucella suis morphology in culture and persistence in macrophages and mice. J Bacteriol187:5767–5775 [CrossRef][PubMed]
    [Google Scholar]
  3. Bandara H. M., Lam O. L., Watt R. M., Jin L. J., Samaranayake L. P.. ( 2010;). Bacterial lipopolysaccharides modulate in vitro biofilm formation of Candida species. J Med Microbiol59:1225–1234 [CrossRef][PubMed]
    [Google Scholar]
  4. Beringer J. E.. ( 1974;). R factor transfer in Rhizobium leguminosarum . J Gen Microbiol84:188–198[PubMed][CrossRef]
    [Google Scholar]
  5. Borthakur D., Barber C. E., Lamb J. W., Daniels M. J., Downie J. A., Johnston A. W. B.. ( 1986;). A mutation that blocks exopolysaccharide synthesis prevents nodulation of peas by Rhizobium leguminosarum but not of beans by R. phaseolii and is corrected by cloned DNA from Rhizobium or the phytopathogen Xanthomonas . Mol Gen Genet203:320–323 [CrossRef]
    [Google Scholar]
  6. Butt H. J.. ( 1991a;). Electrostatic interaction in atomic force microscopy. Biophys J60:777–785 [CrossRef][PubMed]
    [Google Scholar]
  7. Butt H. J.. ( 1991b;). Measuring electrostatic, van der Waals, and hydration forces in electrolyte solutions with an atomic force microscope. Biophys J60:1438–1444 [CrossRef][PubMed]
    [Google Scholar]
  8. Carlson R. W., Reuhs B. L., Forsberg L. S., Kannenberg E. L.. ( 1999;). Rhizobial cell surface carbohydrates: their structures, biosynthesis and functions. Genetics of Bacterial Polysaccharides53–90 Goldberg J. B.. Boca Raton: CRC Press;
    [Google Scholar]
  9. Chen J. L., Lin S., Lin L. P.. ( 2006;). Rhizobial surface biopolymers and their interaction with lectin measured by atomic force microscopy. World J Microb Biot22:565–570 [CrossRef]
    [Google Scholar]
  10. Cleveland J. P., Manne S., Bocek D., Hansma P. K.. ( 1993;). Nondestructive method for determining the spring constant of cantilevers for scanning force microscopy. Rev Sci Instrum64:403–405 [CrossRef]
    [Google Scholar]
  11. Crawford R. W., Reeve K. E., Gunn J. S.. ( 2010;). Flagellated but not hyperfimbriated Salmonella enterica serovar Typhimurium attaches to and forms biofilms on cholesterol-coated surfaces. J Bacteriol192:2981–2990 [CrossRef][PubMed]
    [Google Scholar]
  12. Dardanelli M., Angelini J., Fabra A.. ( 2003;). A calcium-dependent bacterial surface protein is involved in the attachment of rhizobia to peanut roots. Can J Microbiol49:399–405 [CrossRef][PubMed]
    [Google Scholar]
  13. de Maagd R. A., de Rijk R., Mulders I. H., Lugtenberg B. J.. ( 1989a;). Immunological characterization of Rhizobium leguminosarum outer membrane antigens by use of polyclonal and monoclonal antibodies. J Bacteriol171:1136–1142[PubMed]
    [Google Scholar]
  14. de Maagd R. A., Wientjes F. B., Lugtenberg B. J.. ( 1989b;). Evidence for divalent cation (Ca2+)-stabilized oligomeric proteins and covalently bound protein-peptidoglycan complexes in the outer membrane of Rhizobium leguminosarum . J Bacteriol171:3989–3995[PubMed]
    [Google Scholar]
  15. Díaz C., Schilardi P. L., Salvarezza R. C., Fernández Lorenzo de Mele M.. ( 2011;). Have flagella a preferred orientation during early stages of biofilm formation? AFM study using patterned substrates. Colloids Surf B Biointerfaces82:536–542 [CrossRef][PubMed]
    [Google Scholar]
  16. Dorobantu L. S., Gray M. R.. ( 2010;). Application of atomic force microscopy in bacterial research. Scanning32:74–96 [CrossRef][PubMed]
    [Google Scholar]
  17. Fey P. D., Olson M. E.. ( 2010;). Current concepts in biofilm formation of Staphylococcus epidermidis . Future Microbiol5:917–933 [CrossRef][PubMed]
    [Google Scholar]
  18. Fujishige N. A., Kapadia N. N., De Hoff P. L., Hirsch A. M.. ( 2006;). Investigations of Rhizobium biofilm formation. FEMS Microbiol Ecol56:195–206 [CrossRef][PubMed]
    [Google Scholar]
  19. Gilbert K. B., Vanderlinde E. M., Yost C. K.. ( 2007;). Mutagenesis of the carboxy terminal protease CtpA decreases desiccation tolerance in Rhizobium leguminosarum . FEMS Microbiol Lett272:65–74 [CrossRef][PubMed]
    [Google Scholar]
  20. Habimana O., Le Goff C., Juillard V., Bellon-Fontaine M. N., Buist G., Kulakauskas S., Briandet R.. ( 2007;). Positive role of cell wall anchored proteinase PrtP in adhesion of lactococci. BMC Microbiol7:36 [CrossRef][PubMed]
    [Google Scholar]
  21. Hara H., Nishimura Y., Kato J., Suzuki H., Nagasawa H., Suzuki A., Hirota Y.. ( 1989;). Genetic analyses of processing involving C-terminal cleavage in penicillin-binding protein 3 of Escherichia coli . J Bacteriol171:5882–5889[PubMed]
    [Google Scholar]
  22. Hara H., Yamamoto Y., Higashitani A., Suzuki H., Nishimura Y.. ( 1991;). Cloning, mapping, and characterization of the Escherichia coli prc gene, which is involved in C-terminal processing of penicillin-binding protein 3. J Bacteriol173:4799–4813[PubMed]
    [Google Scholar]
  23. Heinisch J. J., Duprés V., Alsteens D., Dufrêne Y. F.. ( 2010;). Measurement of the mechanical behavior of yeast membrane sensors using single-molecule atomic force microscopy. Nat Protoc5:670–677 [CrossRef][PubMed]
    [Google Scholar]
  24. Hoge R., Laschinski M., Jaeger K. E., Wilhelm S., Rosenau F.. ( 2011;). The subcellular localization of a C-terminal processing protease in Pseudomonas aeruginosa . FEMS Microbiol Lett316:23–30 [CrossRef][PubMed]
    [Google Scholar]
  25. Hu M., Wang J., Zhao H., Dong S., Cai J.. ( 2009;). Nanostructure and nanomechanics analysis of lymphocyte using AFM: from resting, activated to apoptosis. J Biomech42:1513–1519 [CrossRef][PubMed]
    [Google Scholar]
  26. Humphrey B., Vincent J. M.. ( 1962;). Calcium in cell walls of Rhizobium trifolii . J Gen Microbiol29:557–561[PubMed][CrossRef]
    [Google Scholar]
  27. Johnston A. W., Beringer J. E.. ( 1975;). Identification of the rhizobium strains in pea root nodules using genetic markers. J Gen Microbiol87:343–350[PubMed][CrossRef]
    [Google Scholar]
  28. Kaminskyj S. G. W., Dahms T. E. S.. ( 2008;). High spatial resolution surface imaging and analysis of fungal cells using SEM and AFM. Micron39:349–361 [CrossRef][PubMed]
    [Google Scholar]
  29. Kim W. S., Sun-Hyung J., Park R. D., Kim K. Y., Krishnan H. B.. ( 2005;). Sinorhizobium fredii USDA257 releases a 22-kDa outer membrane protein (Omp22) to the extracellular milieu when grown in calcium-limiting conditions. Mol Plant Microbe Interact18:808–818 [CrossRef][PubMed]
    [Google Scholar]
  30. Lepek V. C., D’Antuono A. L.. ( 2005;). Bacterial surface polysaccharides and their role in the rhizobia–legume association. Lotus Newsletter35:93–105
    [Google Scholar]
  31. Ma H., Snook L. A., Kaminskyj S. G. W., Dahms T. E. S.. ( 2005;). Surface ultrastructure and elasticity in growing tips and mature regions of Aspergillus hyphae describe wall maturation. Microbiology151:3679–3688 [CrossRef][PubMed]
    [Google Scholar]
  32. Ma H., Snook L. A., Tian C., Kaminskyj S. G. W., Dahms T. E. S.. ( 2006;). Fungal surface remodelling visualized by atomic force microscopy. Mycol Res110:879–886 [CrossRef][PubMed]
    [Google Scholar]
  33. Manetti A. G., Zingaretti C., Falugi F., Capo S., Bombaci M., Bagnoli F., Gambellini G., Bensi G., Mora M. et al. & other authors ( 2007;). Streptococcus pyogenes pili promote pharyngeal cell adhesion and biofilm formation. Mol Microbiol64:968–983 [CrossRef][PubMed]
    [Google Scholar]
  34. Miller E., Garcia T., Hultgren S., Oberhauser A. F.. ( 2006;). The mechanical properties of E. coli type 1 pili measured by atomic force microscopy techniques. Biophys J91:3848–3856 [CrossRef][PubMed]
    [Google Scholar]
  35. Mongiardini E. J., Ausmees N., Pérez-Giménez J., Julia Althabegoiti M., Ignacio Quelas J., López-García S. L., Lodeiro A. R.. ( 2008;). The rhizobial adhesion protein RapA1 is involved in adsorption of rhizobia to plant roots but not in nodulation. FEMS Microbiol Ecol65:279–288 [CrossRef][PubMed]
    [Google Scholar]
  36. O’Neill M. A., Darvill A. G., Albersheim P.. ( 1991;). The degree of esterification and points of substitution by O-acetyl and O-(3-hydroxybutanoyl) groups in the acidic extracellular polysaccharides secreted by Rhizobium leguminosarum biovars viciae, trifolii, and phaseoli are not related to host range. J Biol Chem266:9549–9555[PubMed]
    [Google Scholar]
  37. O’Toole G. A., Kolter R.. ( 1998;). Flagellar and twitching motility are necessary for Pseudomonas aeruginosa biofilm development. Mol Microbiol30:295–304 [CrossRef][PubMed]
    [Google Scholar]
  38. Otto M.. ( 2008;). Staphylococcal biofilms. Curr Top Microbiol Immunol322:207–228 [CrossRef][PubMed]
    [Google Scholar]
  39. Paul B. C., El-Ganiny A. M., Abbas M., Kaminskyj S. G. W., Dahms T. E. S.. ( 2011;). Quantifying the importance of galactofuranose in Aspergillus nidulans hyphal wall surface organization by atomic force microscopy. Eukaryot Cell10:646–653 [CrossRef][PubMed]
    [Google Scholar]
  40. Pinne M., Denker K., Nilsson E., Benz R., Bergström S.. ( 2006;). The BBA01 protein, a member of paralog family 48 from Borrelia burgdorferi, is potentially interchangeable with the channel-forming protein P13. J Bacteriol188:4207–4217 [CrossRef][PubMed]
    [Google Scholar]
  41. Reis Y., Cortes H., Viseu Melo L., Fazendeiro I., Leitão A., Soares H.. ( 2006;). Microtubule cytoskeleton behavior in the initial steps of host cell invasion by Besnoitia besnoiti . FEBS Lett580:4673–4682 [CrossRef][PubMed]
    [Google Scholar]
  42. Robertsen B. K., Aman P., Darvill A. G., McNeil M., Albersheim P.. ( 1981;). Host–symbiont interactions: V. The structure of acidic extracellular polysaccharides secreted by Rhizobium leguminosarum and Rhizobium trifolii . Plant Physiol67:389–400 [CrossRef][PubMed]
    [Google Scholar]
  43. Russo D. M., Williams A., Edwards A., Posadas D. M., Finnie C., Dankert M., Downie J. A., Zorreguieta A.. ( 2006;). Proteins exported via the PrsD–PrsE type I secretion system and the acidic exopolysaccharide are involved in biofilm formation by Rhizobium leguminosarum . J Bacteriol188:4474–4486 [CrossRef][PubMed]
    [Google Scholar]
  44. Silhavy T. J., Kahne D., Walker S.. ( 2010;). The bacterial cell envelope. Cold Spring Harb Perspect Biol2:a000414 [CrossRef][PubMed]
    [Google Scholar]
  45. Skorupska A., Janczarek M., Marczak M., Mazur A., Król J.. ( 2006;). Rhizobial exopolysaccharides: genetic control and symbiotic functions. Microb Cell Fact5:7 [CrossRef][PubMed]
    [Google Scholar]
  46. Smit G., Kijne J. W., Lugtenberg B. J.. ( 1987;). Involvement of both cellulose fibrils and a Ca2+-dependent adhesin in the attachment of Rhizobium leguminosarum to pea root hair tips. J Bacteriol169:4294–4301[PubMed]
    [Google Scholar]
  47. Soto M. J., Domínguez-Ferreras A., Pérez-Mendoza D., Sanjuán J., Olivares J.. ( 2009;). Mutualism versus pathogenesis: the give-and-take in plant–bacteria interactions. Cell Microbiol11:381–388 [CrossRef][PubMed]
    [Google Scholar]
  48. Vadillo-Rodriguez V., Schooling S. R., Dutcher J. R.. ( 2009;). In situ characterization of differences in the viscoelastic response of individual Gram-negative and Gram-positive bacterial cells. J Bacteriol191:5518–5525 [CrossRef][PubMed]
    [Google Scholar]
  49. Vanderlinde E. M., Muszynski A., Harrison J. J., Koval S. F., Foreman D. L., Ceri H., Kannenberg E. L., Carlson R. W., Yost C. K.. ( 2009;). Rhizobium leguminosarum biovar viciae 3841, deficient in 27-hydroxyoctacosanoate-modified lipopolysaccharide, is impaired in desiccation tolerance, biofilm formation and motility. Microbiology155:3055–3069 [CrossRef][PubMed]
    [Google Scholar]
  50. Vanderlinde E. M., Harrison J. J., Muszyński A., Carlson R. W., Turner R. J., Yost C. K.. ( 2010;). Identification of a novel ABC transporter required for desiccation tolerance, and biofilm formation in Rhizobium leguminosarum bv. viciae 3841. FEMS Microbiol Ecol71:327–340 [CrossRef][PubMed]
    [Google Scholar]
  51. Vincent V. M.. ( 1970;). A Manual for the Practical Study of Root-nodule Bacteria (IBP Handbook no. 15) Oxford: Blackwell Scientific Publications;
    [Google Scholar]
  52. Vlassak K. M., Vanderleyden J.. ( 1997;). Factors influencing nodule occupancy by inoculant rhizobia. Crit Rev Plant Sci16:163–219[CrossRef]
    [Google Scholar]
  53. Volle C. B., Ferguson M. A., Aidala K. E., Spain E. M., Núñez M. E.. ( 2008;). Spring constants and adhesive properties of native bacterial biofilm cells measured by atomic force microscopy. Colloids Surf B Biointerfaces67:32–40 [CrossRef][PubMed]
    [Google Scholar]
  54. Vu B., Chen M., Crawford R. J., Ivanova E. P.. ( 2009;). Bacterial extracellular polysaccharides involved in biofilm formation. Molecules14:2535–2554 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.051045-0
Loading
/content/journal/micro/10.1099/mic.0.051045-0
Loading

Data & Media loading...

Most cited this month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error