1887

Abstract

is a plant-pathogenic bacterium that produces cellulose-containing biofilms, called pellicles, at the air–liquid interface of liquid cultures. pellicle formation appears to be an emergent property dependent upon at least three gene clusters, including cellulose synthesis, type III secretion system (T3SS) and flagellar genes. The cellulose synthesis operon is homologous to that of , which is used for industrial cellulose production, and the cellulose nanofibres produced by were similar in diameter and branching pattern to those produced by . , an enterobacterium closely related to , encodes a second type of cellulose synthesis operon, and it produced biofilm strands that differed in width and branching pattern from those of and . Unlike any previously described cellulose fibre, the cellulose nanofibres were decorated with bead-like structures. Mutation of the cellulose synthesis operon genes resulted in loss of cellulose synthesis and production of a cellulase-resistant biofilm. Mutation of other genes required for pellicle formation, including those encoding FliA (a sigma factor that regulates flagella production), HrpL (a sigma factor that regulates the T3SS), and AdrA, a GGDEF protein, affected both biofilm and cell morphology. Mutation of the cellulose synthase or of resulted in decreased accumulation of the T3SS-secreted protein HrpN.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.051003-0
2011-10-01
2019-10-21
Loading full text...

Full text loading...

/deliver/fulltext/micro/157/10/2733.html?itemId=/content/journal/micro/10.1099/mic.0.051003-0&mimeType=html&fmt=ahah

References

  1. Bielecki S., Krystynowicz A., Turkiewicz M., Kalinowska H.. ( 2002;). Bacterial cellulose. . In Biopolymers, pp. 37–90. Edited by Steinbuchel A., Vandamne E. J., De Baets S... Weinheim:: Wiley-Vch;.
    [Google Scholar]
  2. Brown E. E., Laborie M.-P. G.. ( 2007;). Bioengineering bacterial cellulose/poly(ethylene oxide) nanocomposites. . Biomacromolecules 8:, 3074–3081. [CrossRef][PubMed]
    [Google Scholar]
  3. Collinson S. K., Emödy L., Müller K. H., Trust T. J., Kay W. W.. ( 1991;). Purification and characterization of thin, aggregative fimbriae from Salmonella enteritidis. . J Bacteriol 173:, 4773–4781.[PubMed]
    [Google Scholar]
  4. Da Re S., Ghigo J. M.. ( 2006;). A CsgD-independent pathway for cellulose production and biofilm formation in Escherichia coli. . J Bacteriol 188:, 3073–3087. [CrossRef][PubMed]
    [Google Scholar]
  5. Datsenko K. A., Wanner B. L.. ( 2000;). One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. . Proc Natl Acad Sci U S A 97:, 6640–6645. [CrossRef][PubMed]
    [Google Scholar]
  6. García B., Latasa C., Solano C., García-del Portillo F., Gamazo C., Lasa I.. ( 2004;). Role of the GGDEF protein family in Salmonella cellulose biosynthesis and biofilm formation. . Mol Microbiol 54:, 264–277. [CrossRef][PubMed]
    [Google Scholar]
  7. Grenier A. M., Duport G., Pagès S., Condemine G., Rahbé Y.. ( 2006;). The phytopathogen Dickeya dadantii (Erwinia chrysanthemi 3937) is a pathogen of the pea aphid. . Appl Environ Microbiol 72:, 1956–1965. [CrossRef][PubMed]
    [Google Scholar]
  8. Hammer N. D., Schmidt J. C., Chapman M. R.. ( 2007;). The curli nucleator protein, CsgB, contains an amyloidogenic domain that directs CsgA polymerization. . Proc Natl Acad Sci U S A 104:, 12494–12499. [CrossRef][PubMed]
    [Google Scholar]
  9. Hirano S. S., Ostertag E. M., Savage S. A., Baker L. S., Willis D. K., Upper C. D.. ( 1997;). Contribution of the regulatory gene lemA to field fitness of Pseudomonas syringae pv. syringae. . Appl Environ Microbiol 63:, 4304–4312.[PubMed]
    [Google Scholar]
  10. Jahn C. E., Willis D. K., Charkowski A. O.. ( 2008;). The flagellar sigma factor Flia is required for Dickeya dadantii virulence. . Mol Plant Microbe Interact 21:, 1431–1442. [CrossRef][PubMed]
    [Google Scholar]
  11. Kader A., Simm R., Gerstel U., Morr M., Römling U.. ( 2006;). Hierarchical involvement of various GGDEF domain proteins in rdar morphotype development of Salmonella enterica serovar Typhimurium. . Mol Microbiol 60:, 602–616. [CrossRef][PubMed]
    [Google Scholar]
  12. Kojima Y., Seto A., Tonouchi N., Tsuchida T., Yoshinaga F.. ( 1997;). High rate production in a static culture of bacterial cellulose by a newly isolated Acetobacter strain. . Biosci Biotechnol Biochem 61:, 1585–1586. [CrossRef]
    [Google Scholar]
  13. Le Quéré B., Ghigo J. M.. ( 2009;). BcsQ is an essential component of the Escherichia coli cellulose biosynthesis apparatus that localizes at the bacterial cell pole. . Mol Microbiol 72:, 724–740. [CrossRef][PubMed]
    [Google Scholar]
  14. Lemattre M., Narcy J. P.. ( 1972;). Une infection bacterienne nouvelle du Saintpaulia due a Erwinia chrysanthemi. . C R Acad Sci 58:, 227–231.
    [Google Scholar]
  15. Muir R. E., Easter J., Gober J. W.. ( 2005;). The trans-acting flagellar regulatory proteins, FliX and FlbD, play a central role in linking flagellar biogenesis and cytokinesis in Caulobacter crescentus. . Microbiology 151:, 3699–3711. [CrossRef][PubMed]
    [Google Scholar]
  16. Phelps M. R., Hobbs J. R., Kilburn D. G., Turner R. F. B.. ( 1994;). Technology for regenerable biosensor probes based on enzyme-cellulose binding domain conjugates. . Biotechnol Prog 10:, 433–440. [CrossRef]
    [Google Scholar]
  17. Reverchon S., Nasser W., Robert-Baudouy J.. ( 1994;). pecS: a locus controlling pectinase, cellulase and blue pigment production in Erwinia chrysanthemi. . Mol Microbiol 11:, 1127–1139. [CrossRef][PubMed]
    [Google Scholar]
  18. Reverchon S., Rouanet C., Expert D., Nasser W.. ( 2002;). Characterization of indigoidine biosynthetic genes in Erwinia chrysanthemi and role of this blue pigment in pathogenicity. . J Bacteriol 184:, 654–665. [CrossRef][PubMed]
    [Google Scholar]
  19. Ried J. L., Collmer A.. ( 1987;). Construction and analysis of an Erwinia chrysanthemi mutant containing deletions in the pel genes encoding all of the major pectate lyase isozymes. . Phytopathology 77:, 1719–1719.
    [Google Scholar]
  20. Römling U., Rohde M., Olsén A., Normark S., Reinköster J.. ( 2000;). agfD, the checkpoint of multicellular and aggregative behaviour in Salmonella typhimurium regulates at least two independent pathways. . Mol Microbiol 36:, 10–23. [CrossRef][PubMed]
    [Google Scholar]
  21. Sambrook J., Russell D. W.. ( 2001;). Molecular Cloning: a Laboratory Manual, , 3rd edn.. Cold Spring Harbor, NY:: Cold Spring Harbor Laboratory;.
    [Google Scholar]
  22. Saxena I. M., Lin F. C., Brown R. M. Jr. ( 1990;). Cloning and sequencing of the cellulose synthase catalytic subunit gene of Acetobacter xylinum. . Plant Mol Biol 15:, 673–683. [CrossRef][PubMed]
    [Google Scholar]
  23. Saxena I. M., Lin F. C., Brown R. M. Jr. ( 1991;). Identification of a new gene in an operon for cellulose biosynthesis in Acetobacter xylinum. . Plant Mol Biol 16:, 947–954. [CrossRef][PubMed]
    [Google Scholar]
  24. Saxena I. M., Kudlicka K., Okuda K., Brown R. M. Jr. ( 1994;). Characterization of genes in the cellulose-synthesizing operon (acs operon) of Acetobacter xylinum: implications for cellulose crystallization. . J Bacteriol 176:, 5735–5752.[PubMed]
    [Google Scholar]
  25. Sharp D., Forsythe S., Davis J. J.. ( 2008;). Carbon fibre composites: integrated electrochemical sensors for wound management. . J Biochem 144:, 87–93. [CrossRef][PubMed]
    [Google Scholar]
  26. Sibbald R. G., Woo K. Y.. ( 2008;). The biology of chronic foot ulcers in persons with diabetes. . Diabetes Metab Res Rev 24: (Suppl. 1), S25–S30. [CrossRef][PubMed]
    [Google Scholar]
  27. Solano C., García B., Valle J., Berasain C., Ghigo J. M., Gamazo C., Lasa I.. ( 2002;). Genetic analysis of Salmonella enteritidis biofilm formation: critical role of cellulose. . Mol Microbiol 43:, 793–808. [CrossRef][PubMed]
    [Google Scholar]
  28. Standal R., Iversen T. G., Coucheron D. H., Fjaervik E., Blatny J. M., Valla S.. ( 1994;). A new gene required for cellulose production and a gene encoding cellulolytic activity in Acetobacter xylinum are colocalized with the bcs operon. . J Bacteriol 176:, 665–672.[PubMed]
    [Google Scholar]
  29. Svensson A., Nicklasson E., Harrah T., Panilaitis B., Kaplan D. L., Brittberg M., Gatenholm P.. ( 2005;). Bacterial cellulose as a potential scaffold for tissue engineering of cartilage. . Biomaterials 26:, 419–431. [CrossRef][PubMed]
    [Google Scholar]
  30. Tabuchi M.. ( 2007;). Nanobiotech versus synthetic nanotech?. Nat Biotechnol 25:, 389–390. [CrossRef][PubMed]
    [Google Scholar]
  31. Takahashi H., Kumagai T., Kitani K., Mori M., Matoba Y., Sugiyama M.. ( 2007;). Cloning and characterization of a Streptomyces single module type non-ribosomal peptide synthetase catalyzing a blue pigment synthesis. . J Biol Chem 282:, 9073–9081. [CrossRef][PubMed]
    [Google Scholar]
  32. Tsioptsias C., Panayiotou C.. ( 2008;). Preparation of cellulose-nanohydroxyapatite composite scaffolds from ionic liquid solutions. . Carbohydr Polym 74:, 99–105. [CrossRef]
    [Google Scholar]
  33. White A. P., Gibson D. L., Collinson S. K., Banser P. A., Kay W. W.. ( 2003;). Extracellular polysaccharides associated with thin aggregative fimbriae of Salmonella enterica serovar Enteritidis. . J Bacteriol 185:, 5398–5407. [CrossRef][PubMed]
    [Google Scholar]
  34. Wiegand C., Elsner P., Hipler U.-C., Klemm D.. ( 2006;). Protease and ROS activities influenced by a composite of bacterial cellulose and collagen type I in vitro. . Cellulose 13:, 689–696. [CrossRef]
    [Google Scholar]
  35. Yang C.-H., Gavilanes-Ruiz M., Okinaka Y., Vedel R., Berthuy I., Boccara M., Chen J. W. T., Perna N. T., Keen N. T.. ( 2002;). hrp genes of Erwinia chrysanthemi 3937 are important virulence factors. . Mol Plant Microbe Interact 15:, 472–480. [CrossRef][PubMed]
    [Google Scholar]
  36. Yap M.-N., Yang C. H., Barak J. D., Jahn C. E., Charkowski A. O.. ( 2005;). The Erwinia chrysanthemi type III secretion system is required for multicellular behavior. . J Bacteriol 187:, 639–648. [CrossRef][PubMed]
    [Google Scholar]
  37. Yap M.-N., Rojas C. M., Yang C.-H., Charkowski A. O.. ( 2006;). Harpin mediates cell aggregation in Erwinia chrysanthemi 3937. . J Bacteriol 188:, 2280–2284. [CrossRef][PubMed]
    [Google Scholar]
  38. Yap M. N., Yang C.-H., Charkowski A. O.. ( 2008;). The response regulator HrpY of Dickeya dadantii 3937 regulates virulence genes not linked to the hrp cluster. . Mol Plant Microbe Interact 21:, 304–314. [CrossRef][PubMed]
    [Google Scholar]
  39. Yi X., Yamazaki A., Biddle E., Zeng Q., Yang C.-H.. ( 2010;). Genetic analysis of two phosphodiesterases reveals cyclic diguanylate regulation of virulence factors in Dickeya dadantii. . Mol Microbiol 77:, 787–800. [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.051003-0
Loading
/content/journal/micro/10.1099/mic.0.051003-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error