1887

Abstract

complex (c) bacteria are opportunistic pathogens infecting hosts such as cystic fibrosis (CF) patients. Long-term c infection of CF patients’ airways has been associated with emergence of phenotypic variation. Here we studied two clonal isolates displaying different morphotypes from a chronically infected CF patient to evaluate trait development during lung infection. Expression profiling of mucoid D2095 and non-mucoid D2214 isolates revealed decreased expression of genes encoding products related to virulence-associated traits and metabolism in D2214. Furthermore, D2214 showed no exopolysaccharide production, lower motility and chemotaxis, and more biofilm formation, particularly under microaerophilic conditions, than the clonal mucoid isolate D2095. When was used as acute infection model, D2214 at a cell number of approximately 7×10 c.f.u. caused a higher survival rate than D2095, although 6 days post-infection most of the larvae were dead. Infection with the same number of cells by mucoid D2095 caused larval death by day 4. The decreased expression of genes involved in carbon and nitrogen metabolism may reflect lower metabolic needs of D2214 caused by lack of exopolysaccharide, but also by the attenuation of pathways not required for survival. As a result, D2214 showed higher survival than D2095 in minimal medium for 28 days under aerobic conditions. Overall, adaptation during c chronic lung infections gave rise to genotypic and phenotypic variation among isolates, contributing to their fitness while maintaining their capacity for survival in this opportunistic human niche.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.050989-0
2011-11-01
2020-01-17
Loading full text...

Full text loading...

/deliver/fulltext/micro/157/11/3124.html?itemId=/content/journal/micro/10.1099/mic.0.050989-0&mimeType=html&fmt=ahah

References

  1. Altschul S. F., Madden T. L., Schäffer A. A., Zhang J., Zhang Z., Miller W., Lipman D. J..( 1997;). Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res25:3389–3402 [CrossRef][PubMed]
    [Google Scholar]
  2. Aubert D., MacDonald D. K., Valvano M. A..( 2010;). BcsKC is an essential protein for the type VI secretion system activity in Burkholderia cenocepacia that forms an outer membrane complex with BcsLB. J Biol Chem285:35988–35998 [CrossRef][PubMed]
    [Google Scholar]
  3. Baldwin A., Mahenthiralingam E., Drevinek P., Vandamme P., Govan J. R., Waine D. J., LiPuma J. J., Chiarini L., Dalmastri C. et al.& other authors ( 2007;). Environmental Burkholderia cepacia complex isolates in human infections. Emerg Infect Dis13:458–461 [CrossRef][PubMed]
    [Google Scholar]
  4. Bauer A. W., Kirby W. M., Sherris J. C., Turck M..( 1966;). Antibiotic susceptibility testing by a standardized single disk method. Am J Clin Pathol45:493–496[PubMed]
    [Google Scholar]
  5. Burtnick M., Bolton A., Brett P., Watanabe D., Woods D..( 2001;). Identification of the acid phosphatase (acpA) gene homologues in pathogenic and non-pathogenic Burkholderia spp. facilitates TnphoA mutagenesis. Microbiology147:111–120[PubMed]
    [Google Scholar]
  6. Bylund J., Burgess L. A., Cescutti P., Ernst R. K., Speert D. P..( 2006;). Exopolysaccharides from Burkholderia cenocepacia inhibit neutrophil chemotaxis and scavenge reactive oxygen species. J Biol Chem281:2526–2532 [CrossRef][PubMed]
    [Google Scholar]
  7. Coenye T., Drevinek P., Mahenthiralingam E., Shah S. A., Gill R. T., Vandamme P., Ussery D. W..( 2007;). Identification of putative noncoding RNA genes in the Burkholderia cenocepacia J2315 genome. FEMS Microbiol Lett276:83–92 [CrossRef][PubMed]
    [Google Scholar]
  8. Conway B. A., Chu K. K., Bylund J., Altman E., Speert D. P..( 2004;). Production of exopolysaccharide by Burkholderia cenocepacia results in altered cell-surface interactions and altered bacterial clearance in mice. J Infect Dis190:957–966 [CrossRef][PubMed]
    [Google Scholar]
  9. Costerton J. W., Stewart P. S., Greenberg E. P..( 1999;). Bacterial biofilms: a common cause of persistent infections. Science284:1318–1322 [CrossRef][PubMed]
    [Google Scholar]
  10. Cunha M. V., Sousa S. A., Leitão J. H., Moreira L. M., Videira P. A., Sá-Correia I..( 2004;). Studies on the involvement of the exopolysaccharide produced by cystic fibrosis-associated isolates of the Burkholderia cepacia complex in biofilm formation and in persistence of respiratory infections. J Clin Microbiol42:3052–3058 [CrossRef][PubMed]
    [Google Scholar]
  11. Downey D. G., Bell S. C., Elborn J. S..( 2009;). Neutrophils in cystic fibrosis. Thorax64:81–88 [CrossRef][PubMed]
    [Google Scholar]
  12. Dufour Y. S., Kiley P. J., Donohue T. J..( 2010;). Reconstruction of the core and extended regulons of global transcription factors. PLoS Genet6:e1001027 [CrossRef][PubMed]
    [Google Scholar]
  13. Ferreira A. S., Leitão J. H., Sousa S. A., Cosme A. M., Sá-Correia I., Moreira L. M..( 2007;). Functional analysis of Burkholderia cepacia genes bceD and bceF, encoding a phosphotyrosine phosphatase and a tyrosine autokinase, respectively: role in exopolysaccharide biosynthesis and biofilm formation. Appl Environ Microbiol73:524–534 [CrossRef][PubMed]
    [Google Scholar]
  14. Ferreira A. S., Leitão J. H., Silva I. N., Pinheiro P. F., Sousa S. A., Ramos C. G., Moreira L. M..( 2010;). Distribution of cepacian biosynthesis genes among environmental and clinical Burkholderia strains and role of cepacian exopolysaccharide in resistance to stress conditions. Appl Environ Microbiol76:441–450 [CrossRef][PubMed]
    [Google Scholar]
  15. Govan J. R., Nelson J. W..( 1992;). Microbiology of lung infection in cystic fibrosis. Br Med Bull48:912–930[PubMed]
    [Google Scholar]
  16. Govan J. R., Brown P. H., Maddison J., Doherty C. J., Nelson J. W., Dodd M., Greening A. P., Webb A. K..( 1993;). Evidence for transmission of Pseudomonas cepacia by social contact in cystic fibrosis. Lancet342:15–19 [CrossRef][PubMed]
    [Google Scholar]
  17. Hammond J. P., Broadley M. R., Craigon D. J., Higgins J., Emmerson Z. F., Townsend H. J., White P. J., May S. T..( 2005;). Using genomic DNA-based probe-selection to improve the sensitivity of high-density oligonucleotide arrays when applied to heterologous species. Plant Methods1:10 [CrossRef][PubMed]
    [Google Scholar]
  18. He J., Dai X., Zhao X..( 2007;). PLAN: a web platform for automating high-throughput BLAST searches and for managing and mining results. BMC Bioinformatics8:53 [CrossRef][PubMed]
    [Google Scholar]
  19. Holden M. T., Seth-Smith H. M., Crossman L. C., Sebaihia M., Bentley S. D., Cerdeño-Tárraga A. M., Thomson N. R., Bason N., Quail M. A. et al.& other authors ( 2009;). The genome of Burkholderia cenocepacia J2315, an epidemic pathogen of cystic fibrosis patients. J Bacteriol191:261–277 [CrossRef][PubMed]
    [Google Scholar]
  20. Hunt T. A., Kooi C., Sokol P. A., Valvano M. A..( 2004;). Identification of Burkholderia cenocepacia genes required for bacterial survival in vivo. Infect Immun72:4010–4022 [CrossRef][PubMed]
    [Google Scholar]
  21. Huse H. K., Kwon T., Zlosnik J. E., Speert D. P., Marcotte E. M., Whiteley M..( 2010;). Parallel evolution in Pseudomonas aeruginosa over 39,000 generations in vivo. MBio1:e00199–e00210 [CrossRef][PubMed]
    [Google Scholar]
  22. Isles A., Maclusky I., Corey M., Gold R., Prober C., Fleming P., Levison H..( 1984;). Pseudomonas cepacia infection in cystic fibrosis: an emerging problem. J Pediatr104:206–210 [CrossRef][PubMed]
    [Google Scholar]
  23. Körner H., Sofia H. J., Zumft W. G..( 2003;). Phylogeny of the bacterial superfamily of Crp–Fnr transcription regulators: exploiting the metabolic spectrum by controlling alternative gene programs. FEMS Microbiol Rev27:559–592 [CrossRef][PubMed]
    [Google Scholar]
  24. Leitão J. H., Sousa S. A., Ferreira A. S., Ramos C. G., Silva I. N., Moreira L. M..( 2010;). Pathogenicity, virulence factors, and strategies to fight against Burkholderia cepacia complex pathogens and related species. Appl Microbiol Biotechnol87:31–40 [CrossRef][PubMed]
    [Google Scholar]
  25. Li C., Wong W. H..( 2001a;). Model-based analysis of oligonucleotide arrays: model validation, design issues and standard error application. Genome Biol2:H0032[PubMed]
    [Google Scholar]
  26. Li C., Wong W. H..( 2001b;). Model-based analysis of oligonucleotide arrays: expression index computation and outlier detection. Proc Natl Acad Sci U S A98:31–36 [CrossRef][PubMed]
    [Google Scholar]
  27. Mahenthiralingam E., Urban T. A., Goldberg J. B..( 2005;). The multifarious, multireplicon Burkholderia cepacia complex. Nat Rev Microbiol3:144–156 [CrossRef][PubMed]
    [Google Scholar]
  28. Martin D. W., Schurr M. J., Mudd M. H., Govan J. R., Holloway B. W., Deretic V..( 1993;). Mechanism of conversion to mucoidy in Pseudomonas aeruginosa infecting cystic fibrosis patients. Proc Natl Acad Sci U S A90:8377–8381 [CrossRef][PubMed]
    [Google Scholar]
  29. McKeon S. A., Nguyen D. T., Viteri D. F., Zlosnik J. E., Sokol P. A..( 2011;). Functional quorum sensing systems are maintained during chronic Burkholderia cepacia complex infections in patients with cystic fibrosis. J Infect Dis203:383–392 [CrossRef][PubMed]
    [Google Scholar]
  30. Moreira L. M., Da Costa M. S., Sá-Correia I..( 1997;). Comparative genomic analysis of isolates belonging to the six species of the genus Thermus using pulsed-field gel electrophoresis and ribotyping. Arch Microbiol168:92–101 [CrossRef][PubMed]
    [Google Scholar]
  31. Moreira L. M., Videira P. A., Sousa S. A., Leitão J. H., Cunha M. V., Sá-Correia I..( 2003;). Identification and physical organization of the gene cluster involved in the biosynthesis of Burkholderia cepacia complex exopolysaccharide. Biochem Biophys Res Commun312:323–333 [CrossRef][PubMed]
    [Google Scholar]
  32. Nzula S., Vandamme P., Govan J. R..( 2002;). Influence of taxonomic status on the in vitro antimicrobial susceptibility of the Burkholderia cepacia complex. J Antimicrob Chemother50:265–269 [CrossRef][PubMed]
    [Google Scholar]
  33. Oliver A., Cantón R., Campo P., Baquero F., Blázquez J..( 2000;). High frequency of hypermutable Pseudomonas aeruginosa in cystic fibrosis lung infection. Science288:1251–1253 [CrossRef][PubMed]
    [Google Scholar]
  34. Pedersen S. S., Høiby N., Espersen F., Koch C..( 1992;). Role of alginate in infection with mucoid Pseudomonas aeruginosa in cystic fibrosis. Thorax47:6–13 [CrossRef][PubMed]
    [Google Scholar]
  35. Pfaffl M. W..( 2001;). A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res29:e45 [CrossRef][PubMed]
    [Google Scholar]
  36. Rau M. H., Hansen S. K., Johansen H. K., Thomsen L. E., Workman C. T., Nielsen K. F., Jelsbak L., Høiby N., Yang L., Molin S..( 2010;). Early adaptive developments of Pseudomonas aeruginosa after the transition from life in the environment to persistent colonization in the airways of human cystic fibrosis hosts. Environ Microbiol12:1643–1658[PubMed]
    [Google Scholar]
  37. Sambrook J., Russell D. W..( 2001;). Molecular Cloning: a Laboratory Manual Cold Spring Harbor, NY: CSHL Press;
    [Google Scholar]
  38. Schwarz S., Hood R. D., Mougous J. D..( 2010;). What is type VI secretion doing in all those bugs?. Trends Microbiol18:531–537 [CrossRef][PubMed]
    [Google Scholar]
  39. Seed K. D., Dennis J. J..( 2008;). Development of Galleria mellonella as an alternative infection model for the Burkholderia cepacia complex. Infect Immun76:1267–1275 [CrossRef][PubMed]
    [Google Scholar]
  40. Smith E. E., Buckley D. G., Wu Z., Saenphimmachak C., Hoffman L. R., D’Argenio D. A., Miller S. I., Ramsey B. W., Speert D. P. et al.& other authors ( 2006;). Genetic adaptation by Pseudomonas aeruginosa to the airways of cystic fibrosis patients. Proc Natl Acad Sci U S A103:8487–8492 [CrossRef][PubMed]
    [Google Scholar]
  41. Sousa S. A., Ulrich M., Bragonzi A., Burke M., Worlitzsch D., Leitão J. H., Meisner C., Eberl L., Sá-Correia I., Döring G..( 2007;). Virulence of Burkholderia cepacia complex strains in gp91phox−/− mice. Cell Microbiol9:2817–2825 [CrossRef][PubMed]
    [Google Scholar]
  42. Taylor B. L..( 2007;). Aer on the inside looking out: paradigm for a PAS-HAMP role in sensing oxygen, redox and energy. Mol Microbiol65:1415–1424 [CrossRef][PubMed]
    [Google Scholar]
  43. Zlosnik J. E., Speert D. P..( 2010;). The role of mucoidy in virulence of bacteria from the Burkholderia cepacia complex: a systematic proteomic and transcriptomic analysis. J Infect Dis202:770–781 [CrossRef][PubMed]
    [Google Scholar]
  44. Zlosnik J. E., Hird T. J., Fraenkel M. C., Moreira L. M., Henry D. A., Speert D. P..( 2008;). Differential mucoid exopolysaccharide production by members of the Burkholderia cepacia complex. J Clin Microbiol46:1470–1473 [CrossRef][PubMed]
    [Google Scholar]
  45. Zlosnik J. E., Costa P. S., Brant R., Mori P. Y., Hird T. J., Fraenkel M. C., Wilcox P. G., Davidson A. G., Speert D. P..( 2011;). Mucoid and nonmucoid Burkholderia cepacia complex bacteria in cystic fibrosis infections. Am J Respir Crit Care Med183:67–72 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.050989-0
Loading
/content/journal/micro/10.1099/mic.0.050989-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error