1887

Abstract

is an intracellular pathogen and the causative agent of melioidosis, a life-threatening disease of humans. Within host cells, superoxide is an important mediator of pathogen killing. In this study, we have identified the K96243 gene, shown that it has superoxide dismutase activity, and constructed an allelic deletion mutant of this gene. Compared with the wild-type, the mutant was more sensitive to killing by extracellular superoxide, but not to superoxide generated intracellularly. The mutant showed a markedly decreased survival in J774A.1 mouse macrophages, and reduced numbers of bacteria were recovered from human polymorphonuclear neutrophils (PMNs) when compared with the wild-type. The numbers of wild-type or mutant bacteria recovered from human diabetic neutrophils were significantly lower than from normal human neutrophils. The mutant was attenuated in BALB/c mice. Our results indicate that SodC plays a key role in the virulence of , but that diabetics are not more susceptible to infection because of a reduced ability of PMNs to kill by superoxide.

Funding
This study was supported by the:
  • Transformational Medical Technologies Program (Award W911NF-08-C-0023)
  • Department of Defense Chemical and Biological Defense Program
  • Defense Threat Reduction Agency (DTRA)
Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.050823-0
2011-08-01
2024-12-05
Loading full text...

Full text loading...

/deliver/fulltext/micro/157/8/2392.html?itemId=/content/journal/micro/10.1099/mic.0.050823-0&mimeType=html&fmt=ahah

References

  1. Babu M. M., Priya M. L., Selvan A. T., Madera M., Gough J., Aravind L., Sankaran K. ( 2006). A database of bacterial lipoproteins (DOLOP) with functional assignments to predicted lipoproteins. J Bacteriol 188:2761–2773 [View Article][PubMed]
    [Google Scholar]
  2. Balasoiu D., van Kessel K. C., van Kats-Renaud H. J., Collet T. J., Hoepelman A. I. ( 1997). Granulocyte function in women with diabetes and asymptomatic bacteriuria. Diabetes Care 20:392–395 [View Article][PubMed]
    [Google Scholar]
  3. Bogdan C., Röllinghoff M., Diefenbach A. ( 2000). Reactive oxygen and reactive nitrogen intermediates in innate and specific immunity. Curr Opin Immunol 12:64–76 [View Article][PubMed]
    [Google Scholar]
  4. Breitbach K., Klocke S., Tschernig T., van Rooijen N., Baumann U., Steinmetz I. ( 2006). Role of inducible nitric oxide synthase and NADPH oxidase in early control of Burkholderia pseudomallei infection in mice. Infect Immun 74:6300–6309 [View Article][PubMed]
    [Google Scholar]
  5. Burtnick M. N., Brett P. J., Nair V., Warawa J. M., Woods D. E., Gherardini F. C. ( 2008). Burkholderia pseudomallei type III secretion system mutants exhibit delayed vacuolar escape phenotypes in RAW 264.7 murine macrophages. Infect Immun 76:2991–3000 [View Article][PubMed]
    [Google Scholar]
  6. Chanchamroen S., Kewcharoenwong C., Susaengrat W., Ato M., Lertmemongkolchai G. ( 2009). Human polymorphonuclear neutrophil responses to Burkholderia pseudomallei in healthy and diabetic subjects. Infect Immun 77:456–463 [View Article][PubMed]
    [Google Scholar]
  7. Cullinane M., Gong L., Li X., Lazar-Adler N., Tra T., Wolvetang E., Prescott M., Boyce J. D., Devenish R. J., Adler B. ( 2008). Stimulation of autophagy suppresses the intracellular survival of Burkholderia pseudomallei in mammalian cell lines. Autophagy 4:744–753[PubMed] [CrossRef]
    [Google Scholar]
  8. D’Orazio M., Folcarelli S., Mariani F., Colizzi V., Rotilio G., Battistoni A. ( 2001). Lipid modification of the Cu,Zn superoxide dismutase from Mycobacterium tuberculosis . Biochem J 359:17–22 [View Article][PubMed]
    [Google Scholar]
  9. Delamaire M., Maugendre D., Moreno M., Le Goff M. C., Allannic H., Genetet B. ( 1997). Impaired leucocyte functions in diabetic patients. Diabet Med 14:29–34 [View Article][PubMed]
    [Google Scholar]
  10. Dunn K. L., Farrant J. L., Langford P. R., Kroll J. S. ( 2003). Bacterial [Cu,Zn]-cofactored superoxide dismutase protects opsonized, encapsulated Neisseria meningitidis from phagocytosis by human monocytes/macrophages. Infect Immun 71:1604–1607 [View Article][PubMed]
    [Google Scholar]
  11. Farrant J. L., Sansone A., Canvin J. R., Pallen M. J., Langford P. R., Wallis T. S., Dougan G., Kroll J. S. ( 1997). Bacterial copper- and zinc-cofactored superoxide dismutase contributes to the pathogenesis of systemic salmonellosis. Mol Microbiol 25:785–796 [View Article][PubMed]
    [Google Scholar]
  12. Fridovich I. ( 1995). Superoxide radical and superoxide dismutases. Annu Rev Biochem 64:97–112 [View Article][PubMed]
    [Google Scholar]
  13. Gin H., Brottier E., Aubertin J. ( 1984). Influence of glycaemic normalisation by an artificial pancreas on phagocytic and bactericidal functions of granulocytes in insulin dependent diabetic patients. J Clin Pathol 37:1029–1031 [View Article][PubMed]
    [Google Scholar]
  14. Gong L., Cullinane M., Treerat P., Ramm G., Prescott M., Adler B., Boyce J. D., Devenish R. J. ( 2011). The Burkholderia pseudomallei type III secretion system and BopA are required for evasion of LC3-associated phagocytosis. PLoS ONE 6:e17852 [View Article][PubMed]
    [Google Scholar]
  15. Grace S. C. ( 1990). Phylogenetic distribution of superoxide dismutase supports an endosymbiotic origin for chloroplasts and mitochondria. Life Sci 47:1875–1886 [View Article][PubMed]
    [Google Scholar]
  16. Harley V. S., Dance D. A., Drasar B. S., Tovey G. ( 1998). Effects of Burkholderia pseudomallei and other Burkholderia species on eukaryotic cells in tissue culture. Microbios 96:71–93[PubMed]
    [Google Scholar]
  17. Holden M. T. G., Titball R. W., Peacock S. J., Cerdeño-Tárraga A. M., Atkins T., Crossman L. C., Pitt T., Churcher C., Mungall K. et al. ( 2004). Genomic plasticity of the causative agent of melioidosis, Burkholderia pseudomallei . Proc Natl Acad Sci U S A 101:14240–14245 [View Article][PubMed]
    [Google Scholar]
  18. Imlay J. A. ( 2003). Pathways of oxidative damage. Annu Rev Microbiol 57:395–418 [View Article][PubMed]
    [Google Scholar]
  19. Jones A. L., Beveridge T. J., Woods D. E. ( 1996). Intracellular survival of Burkholderia pseudomallei . Infect Immun 64:782–790[PubMed]
    [Google Scholar]
  20. Kang I. H., Kim J. S., Lee J. K. ( 2007). The virulence of Vibrio vulnificus is affected by the cellular level of superoxide dismutase activity. J Microbiol Biotechnol 17:1399–1402[PubMed]
    [Google Scholar]
  21. Keith K. E., Valvano M. A. ( 2007). Characterization of SodC, a periplasmic superoxide dismutase from Burkholderia cenocepacia . Infect Immun 75:2451–2460 [View Article][PubMed]
    [Google Scholar]
  22. Keith K. E., Oyston P. C., Crossett B., Fairweather N. F., Titball R. W., Walsh T. R., Brown K. A. ( 2005). Functional characterization of OXA-57, a class D β-lactamase from Burkholderia pseudomallei . Antimicrob Agents Chemother 49:1639–1641 [View Article][PubMed]
    [Google Scholar]
  23. Kovach M. E., Phillips R. W., Elzer P. H., Roop R. M. II, Peterson K. M. ( 1994). pBBR1MCS: a broad-host-range cloning vector. Biotechniques 16:800–802[PubMed]
    [Google Scholar]
  24. Logue C. A., Peak I. R., Beacham I. R. ( 2009). Facile construction of unmarked deletion mutants in Burkholderia pseudomallei using sacB counter-selection in sucrose-resistant and sucrose-sensitive isolates. J Microbiol Methods 76:320–323 [View Article][PubMed]
    [Google Scholar]
  25. Loprasert S., Whangsuk W., Sallabhan R., Mongkolsuk S. ( 2003). Regulation of the katG-dpsA operon and the importance of KatG in survival of Burkholderia pseudomallei exposed to oxidative stress. FEBS Lett 542:17–21 [View Article][PubMed]
    [Google Scholar]
  26. Loprasert S., Whangsuk W., Sallabhan R., Mongkolsuk S. ( 2004). DpsA protects the human pathogen Burkholderia pseudomallei against organic hydroperoxide. Arch Microbiol 182:96–101 [View Article][PubMed]
    [Google Scholar]
  27. Marhoffer W., Stein M., Maeser E., Federlin K. ( 1992). Impairment of polymorphonuclear leukocyte function and metabolic control of diabetes. Diabetes Care 15:256–260 [View Article][PubMed]
    [Google Scholar]
  28. Melillo A. A., Mahawar M., Sellati T. J., Malik M., Metzger D. W., Melendez J. A., Bakshi C. S. ( 2009). Identification of Francisella tularensis live vaccine strain CuZn superoxide dismutase as critical for resistance to extracellularly generated reactive oxygen species. J Bacteriol 191:6447–6456 [View Article][PubMed]
    [Google Scholar]
  29. Miyagi K., Kawakami K., Saito A. ( 1997). Role of reactive nitrogen and oxygen intermediates in gamma interferon-stimulated murine macrophage bactericidal activity against Burkholderia pseudomallei . Infect Immun 65:4108–4113[PubMed]
    [Google Scholar]
  30. Ngauy V., Lemeshev Y., Sadkowski L., Crawford G. ( 2005). Cutaneous melioidosis in a man who was taken as a prisoner of war by the Japanese during World War II. J Clin Microbiol 43:970–972 [View Article][PubMed]
    [Google Scholar]
  31. Piddington D. L., Fang F. C., Laessig T., Cooper A. M., Orme I. M., Buchmeier N. A. ( 2001). Cu,Zn superoxide dismutase of Mycobacterium tuberculosis contributes to survival in activated macrophages that are generating an oxidative burst. Infect Immun 69:4980–4987 [View Article][PubMed]
    [Google Scholar]
  32. Puthucheary S. D., Nathan S. A. ( 2006). Comparison by electron microscopy of intracellular events and survival of Burkholderia pseudomallei in monocytes from normal subjects and patients with melioidosis. Singapore Med J 47:697–703[PubMed]
    [Google Scholar]
  33. Shah S. V., Wallin J. D., Eilenj S. D. ( 1983). Chemiluminescence and superoxide anion production by leukocytes from diabetic patients. J Clin Endocrinol Metab 57:402–409 [View Article][PubMed]
    [Google Scholar]
  34. Stevens M. P., Wood M. W., Taylor L. A., Monaghan P., Hawes P., Jones P. W., Wallis T. S., Galyov E. E. ( 2002). An Inv/Mxi-Spa-like type III protein secretion system in Burkholderia pseudomallei modulates intracellular behaviour of the pathogen. Mol Microbiol 46:649–659 [View Article][PubMed]
    [Google Scholar]
  35. Stevens M. P., Stevens J. M., Jeng R. L., Taylor L. A., Wood M. W., Hawes P., Monaghan P., Welch M. D., Galyov E. E. ( 2005). Identification of a bacterial factor required for actin-based motility of Burkholderia pseudomallei . Mol Microbiol 56:40–53 [View Article][PubMed]
    [Google Scholar]
  36. Tan J. S., Anderson J. L., Watanakunakorn C., Phair J. P. ( 1975). Neutrophil dysfunction in diabetes mellitus. J Lab Clin Med 85:26–33[PubMed]
    [Google Scholar]
  37. Tater D., Tepaut B., Bercovici J. P., Youinou P. ( 1987). Polymorphonuclear cell derangements in type I diabetes. Horm Metab Res 19:642–647 [View Article][PubMed]
    [Google Scholar]
  38. White N. J. ( 2003). Melioidosis. Lancet 361:1715–1722 [View Article][PubMed]
    [Google Scholar]
  39. Wiersinga W. J., van der Poll T., White N. J., Day N. P., Peacock S. J. ( 2006). Melioidosis: insights into the pathogenicity of Burkholderia pseudomallei . Nat Rev Microbiol 4:272–282 [View Article][PubMed]
    [Google Scholar]
  40. Williams N. L., Morris J. L., Rush C., Govan B. L., Ketheesan N. ( 2011). Impact of streptozotocin-induced diabetes on functional responses of dendritic cells and macrophages towards Burkholderia pseudomallei . FEMS Immunol Med Microbiol 61:218–227 [View Article][PubMed]
    [Google Scholar]
  41. Wykretowicz A., Wierusz-Wysocka B., Wysocki J., Szczepanik A., Wysocki H. ( 1993). Impairment of the oxygen-dependent microbicidal mechanisms of polymorphonuclear neutrophils in patients with type 2 diabetes is not associated with increased susceptibility to infection. Diabetes Res Clin Pract 19:195–201 [View Article][PubMed]
    [Google Scholar]
/content/journal/micro/10.1099/mic.0.050823-0
Loading
/content/journal/micro/10.1099/mic.0.050823-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error