1887

Abstract

Invasive disease caused by the encapsulated bacteria , and remains an important cause of morbidity and mortality worldwide, despite the introduction of successful conjugate polysaccharide vaccines that target disease-associated strains. In addition, resistance, or more accurately reduced susceptibility, to therapeutic antibiotics is spreading in populations of these organisms. There is therefore a continuing requirement for the surveillance of vaccine and non-vaccine antigens and antibiotic susceptibilities among isolates from invasive disease, which is only partially met by conventional methods. This need can be met with molecular and especially nucleotide sequence-based typing methods, which are fully developed in the case of and which could be more widely deployed in clinical laboratories for and .

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.050518-0
2011-08-01
2020-10-01
Loading full text...

Full text loading...

/deliver/fulltext/micro/157/8/2181.html?itemId=/content/journal/micro/10.1099/mic.0.050518-0&mimeType=html&fmt=ahah

References

  1. Abdeldaim G., Herrmann B., Mölling P., Holmberg H., Blomberg J., Olcén P., Strålin K.. ( 2010;). Usefulness of real-time PCR for lytA, ply, and Spn9802 on plasma samples for the diagnosis of pneumococcal pneumonia. Clin Microbiol Infect16:1135–1141 [CrossRef][PubMed]
    [Google Scholar]
  2. Al-Mazrou Y., Khalil M., Borrow R., Balmer P., Bramwell J., Lal G., Andrews N., Al-Jeffri M.. ( 2005;). Serologic responses to ACYW135 polysaccharide meningococcal vaccine in Saudi children under 5 years of age. Infect Immun73:2932–2939 [CrossRef][PubMed]
    [Google Scholar]
  3. Antignac A., Boneca I. G., Rousselle J. C., Namane A., Carlier J. P., Vázquez J. A., Fox A., Alonso J. M., Taha M. K.. ( 2003;). Correlation between alterations of the penicillin-binding protein 2 and modifications of the peptidoglycan structure in Neisseria meningitidis with reduced susceptibility to penicillin G. J Biol Chem278:31529–31535 [CrossRef][PubMed]
    [Google Scholar]
  4. Austrian R.. ( 1976;). The quellung reaction, a neglected microbiologic technique. Mt Sinai J Med43:699–709[PubMed]
    [Google Scholar]
  5. Barenkamp S. J., Bodor F. F.. ( 1990;). Development of serum bactericidal activity following nontypable Haemophilus influenzae acute otitis media. Pediatr Infect Dis J9:333–339 [CrossRef][PubMed]
    [Google Scholar]
  6. Barenkamp S. J., Leininger E.. ( 1992;). Cloning, expression, and DNA sequence analysis of genes encoding nontypeable Haemophilus influenzae high-molecular-weight surface-exposed proteins related to filamentous hemagglutinin of Bordetella pertussis . Infect Immun60:1302–1313[PubMed]
    [Google Scholar]
  7. Barenkamp S. J., St Geme J. W. III. ( 1996;). Identification of a second family of high-molecular-weight adhesion proteins expressed by non-typable Haemophilus influenzae . Mol Microbiol19:1215–1223 [CrossRef][PubMed]
    [Google Scholar]
  8. Beall B., McEllistrem M. C., Gertz R. E. Jr, Wedel S., Boxrud D. J., Gonzalez A. L., Medina M. J., Pai R., Thompson T. A. et al. ( 2006;). Pre- and postvaccination clonal compositions of invasive pneumococcal serotypes for isolates collected in the United States in 1999, 2001, and 2002. J Clin Microbiol44:999–1017 [CrossRef][PubMed]
    [Google Scholar]
  9. Bentley S. D., Aanensen D. M., Mavroidi A., Saunders D., Rabbinowitsch E., Collins M., Donohoe K., Harris D., Murphy L. et al. ( 2006;). Genetic analysis of the capsular biosynthetic locus from all 90 pneumococcal serotypes. PLoS Genet2:e31 [CrossRef][PubMed]
    [Google Scholar]
  10. Borrow R., Claus H., Guiver M., Smart L., Jones D. M., Kaczmarski E. B., Frosch M., Fox A. J.. ( 1997;). Non-culture diagnosis and serogroup determination of meningococcal B and C infection by a sialyltransferase (siaD) PCR ELISA. Epidemiol Infect118:111–117 [CrossRef][PubMed]
    [Google Scholar]
  11. Brehony C., Jolley K. A., Maiden M. C.. ( 2007;). Multilocus sequence typing for global surveillance of meningococcal disease. FEMS Microbiol Rev31:15–26 [CrossRef][PubMed]
    [Google Scholar]
  12. Brehony C., Wilson D. J., Maiden M. C.. ( 2009;). Variation of the factor H-binding protein of Neisseria meningitidis . Microbiology155:4155–4169 [CrossRef][PubMed]
    [Google Scholar]
  13. Brenciani A., Bacciaglia A., Vecchi M., Vitali L. A., Varaldo P. E., Giovanetti E.. ( 2007;). Genetic elements carrying erm(B) in Streptococcus pyogenes and association with tet(M) tetracycline resistance gene. Antimicrob Agents Chemother51:1209–1216 [CrossRef][PubMed]
    [Google Scholar]
  14. Brueggemann A. B., Griffiths D. T., Meats E., Peto T., Crook D. W., Spratt B. G.. ( 2003;). Clonal relationships between invasive and carriage Streptococcus pneumoniae and serotype- and clone-specific differences in invasive disease potential. J Infect Dis187:1424–1432 [CrossRef][PubMed]
    [Google Scholar]
  15. Brueggemann A. B., Pai R., Crook D. W., Beall B.. ( 2007;). Vaccine escape recombinants emerge after pneumococcal vaccination in the United States. PLoS Pathog3:e168 [CrossRef][PubMed]
    [Google Scholar]
  16. Bryant K. A., Block S. L., Baker S. A., Gruber W. C., Scott D. A.. PCV13 Infant Study Group ( 2010;). Safety and immunogenicity of a 13-valent pneumococcal conjugate vaccine. Pediatrics125:866–875 [CrossRef][PubMed]
    [Google Scholar]
  17. Campos J., Román F., Pérez-Vázquez M., Oteo J., Aracil B., Cercenado E.. Spanish Study Group for Haemophilus influenzae Type E ( 2003;). Infections due to Haemophilus influenzae serotype E: microbiological, clinical, and epidemiological features. Clin Infect Dis37:841–845 [CrossRef][PubMed]
    [Google Scholar]
  18. Caugant D. A., Tzanakaki G., Kriz P.. ( 2007;). Lessons from meningococcal carriage studies. FEMS Microbiol Rev31:52–63 [CrossRef][PubMed]
    [Google Scholar]
  19. Centers for Disease Control and Prevention (CDC) ( 2010;). Licensure of a 13-valent pneumococcal conjugate vaccine (PCV13) and recommendations for use among children – Advisory Committee on Immunization Practices (ACIP), 2010. MMWR Morb Mortal Wkly Rep59:258–261[PubMed]
    [Google Scholar]
  20. Ceyhan M., Yildirim I., Sheppard C. L., George R. C.. ( 2010;). Pneumococcal serotypes causing pediatric meningitis in Turkey: application of a new technology in the investigation of cases negative by conventional culture. Eur J Clin Microbiol Infect Dis29:289–293 [CrossRef][PubMed]
    [Google Scholar]
  21. Coffey T. J., Daniels M., McDougal L. K., Dowson C. G., Tenover F. C., Spratt B. G.. ( 1995;). Genetic analysis of clinical isolates of Streptococcus pneumoniae with high-level resistance to expanded-spectrum cephalosporins. Antimicrob Agents Chemother39:1306–1313[PubMed][CrossRef]
    [Google Scholar]
  22. Corless C. E., Guiver M., Borrow R., Edwards-Jones V., Fox A. J., Kaczmarski E. B.. ( 2001;). Simultaneous detection of Neisseria meningitidis, Haemophilus influenzae, and Streptococcus pneumoniae in suspected cases of meningitis and septicemia using real-time PCR. J Clin Microbiol39:1553–1558 [CrossRef][PubMed]
    [Google Scholar]
  23. Dabernat H., Delmas C., Seguy M., Pelissier R., Faucon G., Bennamani S., Pasquier C.. ( 2002;). Diversity of β-lactam resistance-conferring amino acid substitutions in penicillin-binding protein 3 of Haemophilus influenzae . Antimicrob Agents Chemother46:2208–2218 [CrossRef][PubMed]
    [Google Scholar]
  24. Davies R. L., Lee I.. ( 2004;). Sequence diversity and molecular evolution of the heat-modifiable outer membrane protein gene (ompA) of Mannheimia(Pasteurella) haemolytica, Mannheimia glucosida, and Pasteurella trehalosi . J Bacteriol186:5741–5752 [CrossRef][PubMed]
    [Google Scholar]
  25. Decker M. D., Edwards K. M.. ( 1998;). Haemophilus influenzae type b vaccines: history, choice and comparisons. Pediatr Infect Dis J17:(Suppl. 9)S113–S116 [CrossRef][PubMed]
    [Google Scholar]
  26. Derrick J. P., Urwin R., Suker J., Feavers I. M., Maiden M. C.. ( 1999;). Structural and evolutionary inference from molecular variation in Neisseria porins. Infect Immun67:2406–2413[PubMed]
    [Google Scholar]
  27. Dias C. A., Teixeira L. M., Carvalho M. G., Beall B.. ( 2007;). Sequential multiplex PCR for determining capsular serotypes of pneumococci recovered from Brazilian children. J Med Microbiol56:1185–1188 [CrossRef][PubMed]
    [Google Scholar]
  28. Diggle M. A., Bell C. M., Clarke S. C.. ( 2003;). Nucleotide sequence-based typing of meningococci directly from clinical samples. J Med Microbiol52:505–508 [CrossRef][PubMed]
    [Google Scholar]
  29. ECDC ( 2009;). Annual Epidemiological Report on Communicable Diseases in Europe 2009162 Stockholm: European Centre for Disease Prevention and Control;
    [Google Scholar]
  30. Ecevit I. Z., McCrea K. W., Pettigrew M. M., Sen A., Marrs C. F., Gilsdorf J. R.. ( 2004;). Prevalence of the hifBC, hmw1A, hmw2A, hmwC, and hia genes in Haemophilus influenzae Isolates. J Clin Microbiol42:3065–3072 [CrossRef][PubMed]
    [Google Scholar]
  31. Enright M. C., Spratt B. G.. ( 1998;). A multilocus sequence typing scheme for Streptococcus pneumoniae: identification of clones associated with serious invasive disease. Microbiology144:3049–3060 [CrossRef][PubMed]
    [Google Scholar]
  32. Enright M. C., Spratt B. G.. ( 1999;). Extensive variation in the ddl gene of penicillin-resistant Streptococcus pneumoniae results from a hitchhiking effect driven by the penicillin-binding protein 2b gene. Mol Biol Evol16:1687–1695[PubMed][CrossRef]
    [Google Scholar]
  33. Enright M. C., Knox K., Griffiths D., Crook D. W., Spratt B. G.. ( 2000;). Molecular typing of bacteria directly from cerebrospinal fluid. Eur J Clin Microbiol Infect Dis19:627–630 [CrossRef][PubMed]
    [Google Scholar]
  34. Erwin A. L., Sandstedt S. A., Bonthuis P. J., Geelhood J. L., Nelson K. L., Unrath W. C., Diggle M. A., Theodore M. J., Pleatman C. R. et al. ( 2008;). Analysis of genetic relatedness of Haemophilus influenzae isolates by multilocus sequence typing. J Bacteriol190:1473–1483 [CrossRef][PubMed]
    [Google Scholar]
  35. Falla T. J., Crook D. W. M., Brophy L. N., Maskell D., Kroll J. S., Moxon E. R.. ( 1994;). PCR for capsular typing of Haemophilus influenzae . J Clin Microbiol32:2382–2386[PubMed]
    [Google Scholar]
  36. Farrell D. J., Morrissey I., Bakker S., Felmingham D.. ( 2001;). Detection of macrolide resistance mechanisms in Streptococcus pneumoniae and Streptococcus pyogenes using a multiplex rapid cycle PCR with microwell-format probe hybridization. J Antimicrob Chemother48:541–544 [CrossRef][PubMed]
    [Google Scholar]
  37. Farrell D. J., Jenkins S. G., Brown S. D., Patel M., Lavin B. S., Klugman K. P.. ( 2005;). Emergence and spread of Streptococcus pneumoniae with erm(B) and mef(A) resistance. Emerg Infect Dis11:851–858[PubMed][CrossRef]
    [Google Scholar]
  38. Fletcher L. D., Bernfield L., Barniak V., Farley J. E., Howell A., Knauf M., Ooi P., Smith R. P., Weise P. et al. ( 2004;). Vaccine potential of the Neisseria meningitidis 2086 lipoprotein. Infect Immun72:2088–2100 [CrossRef][PubMed]
    [Google Scholar]
  39. Frasch C. E., Zollinger W. D., Poolman J. T.. ( 1985;). Serotype antigens of Neisseria meningitidis and a proposed scheme for designation of serotypes. Rev Infect Dis7:504–510 [CrossRef][PubMed]
    [Google Scholar]
  40. García E., Llull D., Muñoz R., Mollerach M., López R.. ( 2000;). Current trends in capsular polysaccharide biosynthesis of Streptococcus pneumoniae . Res Microbiol151:429–435 [CrossRef][PubMed]
    [Google Scholar]
  41. Gherardi G., Fallico L., Del Grosso M., Bonanni F., D’Ambrosio F., Manganelli R., Palù G., Dicuonzo G., Pantosti A.. ( 2007;). Antibiotic-resistant invasive pneumococcal clones in Italy. J Clin Microbiol45:306–312 [CrossRef][PubMed]
    [Google Scholar]
  42. Girard M. P., Preziosi M. P., Aguado M. T., Kieny M. P.. ( 2006;). A review of vaccine research and development: meningococcal disease. Vaccine24:4692–4700 [CrossRef][PubMed]
    [Google Scholar]
  43. Giufrè M., Muscillo M., Spigaglia P., Cardines R., Mastrantonio P., Cerquetti M.. ( 2006;). Conservation and diversity of HMW1 and HMW2 adhesin binding domains among invasive nontypeable Haemophilus influenzae isolates. Infect Immun74:1161–1170 [CrossRef][PubMed]
    [Google Scholar]
  44. Grass S., St Geme J. W. III. ( 2000;). Maturation and secretion of the non-typable Haemophilus influenzae HMW1 adhesin: roles of the N-terminal and C-terminal domains. Mol Microbiol36:55–67 [CrossRef][PubMed]
    [Google Scholar]
  45. Grebe T., Hakenbeck R.. ( 1996;). Penicillin-binding proteins 2b and 2x of Streptococcus pneumoniae are primary resistance determinants for different classes of beta-lactam antibiotics. Antimicrob Agents Chemother40:829–834[PubMed]
    [Google Scholar]
  46. Greenwood B.. ( 2007;). The changing face of meningococcal disease in West Africa. Epidemiol Infect135:703–705 [CrossRef][PubMed]
    [Google Scholar]
  47. Hanage W. P., Kaijalainen T., Herva E., Saukkoriipi A., Syrjänen R., Spratt B. G.. ( 2005;). Using multilocus sequence data to define the pneumococcus. J Bacteriol187:6223–6230 [CrossRef][PubMed]
    [Google Scholar]
  48. Hasegawa K., Chiba N., Kobayashi R., Murayama S. Y., Iwata S., Sunakawa K., Ubukata K.. ( 2004;). Rapidly increasing prevalence of β-lactamase-nonproducing, ampicillin-resistant Haemophilus influenzae type b in patients with meningitis. Antimicrob Agents Chemother48:1509–1514 [CrossRef][PubMed]
    [Google Scholar]
  49. Hill D. J., Toleman M. A., Evans D. J., Villullas S., Van Alphen L., Virji M.. ( 2001;). The variable P5 proteins of typeable and non-typeable Haemophilus influenzae target human CEACAM1. Mol Microbiol39:850–862 [CrossRef][PubMed]
    [Google Scholar]
  50. Hiltke T. J., Sethi S., Murphy T. F.. ( 2002;). Sequence stability of the gene encoding outer membrane protein P2 of nontypeable Haemophilus influenzae in the human respiratory tract. J Infect Dis185:627–631 [CrossRef][PubMed]
    [Google Scholar]
  51. Hollingshead S. K., Becker R., Briles D. E.. ( 2000;). Diversity of PspA: mosaic genes and evidence for past recombination in Streptococcus pneumoniae . Infect Immun68:5889–5900 [CrossRef][PubMed]
    [Google Scholar]
  52. Jackson L. A., Neuzil K. M., Yu O., Benson P., Barlow W. E., Adams A. L., Hanson C. A., Mahoney L. D., Shay D. K., Thompson W. W.. Vaccine Safety Datalink ( 2003;). Effectiveness of pneumococcal polysaccharide vaccine in older adults. N Engl J Med348:1747–1755 [CrossRef][PubMed]
    [Google Scholar]
  53. Jiang S. M., Wang L., Reeves P. R.. ( 2001;). Molecular characterization of Streptococcus pneumoniae type 4, 6B, 8, and 18C capsular polysaccharide gene clusters. Infect Immun69:1244–1255 [CrossRef][PubMed]
    [Google Scholar]
  54. Jolley K. A., Brehony C., Maiden M. C.. ( 2007;). Molecular typing of meningococci: recommendations for target choice and nomenclature. FEMS Microbiol Rev31:89–96 [CrossRef][PubMed]
    [Google Scholar]
  55. Jordens J. Z., Slack M. P.. ( 1995;). Haemophilus influenzae: then and now. Eur J Clin Microbiol Infect Dis14:935–948 [CrossRef][PubMed]
    [Google Scholar]
  56. Kilian M., Sørensen I., Frederiksen W.. ( 1979;). Biochemical characteristics of 130 recent isolates from Haemophilus influenzae meningitis. J Clin Microbiol9:409–412[PubMed]
    [Google Scholar]
  57. Klugman K. P.. ( 1990;). Pneumococcal resistance to antibiotics. Clin Microbiol Rev3:171–196[PubMed]
    [Google Scholar]
  58. Klugman K. P.. ( 2002;). The successful clone: the vector of dissemination of resistance in Streptococcus pneumoniae . J Antimicrob Chemother50:(Suppl. S2)1–6 [CrossRef][PubMed]
    [Google Scholar]
  59. Kriz P., Kalmusova J., Felsberg J.. ( 2002;). Multilocus sequence typing of Neisseria meningitidis directly from cerebrospinal fluid. Epidemiol Infect128:157–160 [CrossRef][PubMed]
    [Google Scholar]
  60. Kroll J. S., Loynds B., Brophy L. N., Moxon E. R.. ( 1990;). The bex locus in encapsulated Haemophilus influenzae: a chromosomal region involved in capsule polysaccharide export. Mol Microbiol4:1853–1862 [CrossRef][PubMed]
    [Google Scholar]
  61. Kroll J. S., Loynds B. M., Moxon E. R.. ( 1991;). The Haemophilus influenzae capsulation gene cluster: a compound transposon. Mol Microbiol5:1549–1560 [CrossRef][PubMed]
    [Google Scholar]
  62. LaClaire L. L., Tondella M. L., Beall D. S., Noble C. A., Raghunathan P. L., Rosenstein N. E., Popovic T.. Active Bacterial Core Surveillance Team Members ( 2003;). Identification of Haemophilus influenzae serotypes by standard slide agglutination serotyping and PCR-based capsule typing. J Clin Microbiol41:393–396 [CrossRef][PubMed]
    [Google Scholar]
  63. Leaves N. I., Dimopoulou I., Hayes I., Kerridge S., Falla T., Secka O., Adegbola R. A., Slack M. P., Peto T. E., Crook D. W.. ( 2000;). Epidemiological studies of large resistance plasmids in Haemophilus . J Antimicrob Chemother45:599–604 [CrossRef][PubMed]
    [Google Scholar]
  64. Lindstedt B. A.. ( 2005;). Multiple-locus variable number tandem repeats analysis for genetic fingerprinting of pathogenic bacteria. Electrophoresis26:2567–2582 [CrossRef][PubMed]
    [Google Scholar]
  65. Llull D., Muñoz R., López R., García E.. ( 1999;). A single gene (tts) located outside the cap locus directs the formation of Streptococcus pneumoniae type 37 capsular polysaccharide. Type 37 pneumococci are natural, genetically binary strains. J Exp Med190:241–252 [CrossRef][PubMed]
    [Google Scholar]
  66. Maiden M. C., Frosch M.. ( 2001;). Molecular techniques for the investigation of meningococcal disease epidemiology. Mol Biotechnol18:119–134 [CrossRef][PubMed]
    [Google Scholar]
  67. Maiden M. C., Bygraves J. A., Feil E., Morelli G., Russell J. E., Urwin R., Zhang Q., Zhou J., Zurth K. et al. ( 1998;). Multilocus sequence typing: a portable approach to the identification of clones within populations of pathogenic microorganisms. Proc Natl Acad Sci U S A95:3140–3145 [CrossRef][PubMed]
    [Google Scholar]
  68. Marchese A., Esposito S., Coppo E., Rossi G. A., Tozzi A., Romano M., Da Dalt L., Schito G. C., Principi N.. ( 2011;). Detection of Streptococcus pneumoniae and identification of pneumococcal serotypes by real-time polymerase chain reaction using blood samples from Italian children ≤5 years of age with community-acquired pneumonia. Microb Drug Resistepub ahead of print [CrossRef][PubMed]
    [Google Scholar]
  69. Masignani V., Comanducci M., Giuliani M. M., Bambini S., Adu-Bobie J., Arico B., Brunelli B., Pieri A., Santini L. et al. ( 2003;). Vaccination against Neisseria meningitidis using three variants of the lipoprotein GNA1870. J Exp Med197:789–799 [CrossRef][PubMed]
    [Google Scholar]
  70. McDaniel L. S., McDaniel D. O., Hollingshead S. K., Briles D. E.. ( 1998;). Comparison of the PspA sequence from Streptococcus pneumoniae EF5668 to the previously identified PspA sequence from strain Rx1 and ability of PspA from EF5668 to elicit protection against pneumococci of different capsular types. Infect Immun66:4748–4754[PubMed]
    [Google Scholar]
  71. Meats E., Feil E. J., Stringer S., Cody A. J., Goldstein R., Kroll J. S., Popovic T., Spratt B. G.. ( 2003;). Characterization of encapsulated and noncapsulated Haemophilus influenzae and determination of phylogenetic relationships by multilocus sequence typing. J Clin Microbiol41:1623–1636 [CrossRef][PubMed]
    [Google Scholar]
  72. Melin M. M., Hollingshead S. K., Briles D. E., Hanage W. P., Lahdenkari M., Kaijalainen T., Kilpi T. M., Käyhty H. M.. ( 2008;). Distribution of pneumococcal surface protein A families 1 and 2 among Streptococcus pneumoniae isolates from children in Finland who had acute otitis media or were nasopharyngeal carriers. Clin Vaccine Immunol15:1555–1563 [CrossRef][PubMed]
    [Google Scholar]
  73. Moore M. R., Gertz R. E. Jr, Woodbury R. L., Barkocy-Gallagher G. A., Schaffner W., Lexau C., Gershman K., Reingold A., Farley M. et al. ( 2008;). Population snapshot of emergent Streptococcus pneumoniae serotype 19A in the United States, 2005. J Infect Dis197:1016–1027 [CrossRef][PubMed]
    [Google Scholar]
  74. Moore C. E., Sengduangphachanh A., Thaojaikong T., Sirisouk J., Foster D., Phetsouvanh R., McGee L., Crook D. W., Newton P. N., Peacock S. J.. ( 2010;). Enhanced determination of Streptococcus pneumoniae serotypes associated with invasive disease in Laos by using a real-time polymerase chain reaction serotyping assay with cerebrospinal fluid. Am J Trop Med Hyg83:451–457 [CrossRef][PubMed]
    [Google Scholar]
  75. Mothershed E. A., Sacchi C. T., Whitney A. M., Barnett G. A., Ajello G. W., Schmink S., Mayer L. W., Phelan M., Taylor T. H. Jr et al. ( 2004;). Use of real-time PCR to resolve slide agglutination discrepancies in serogroup identification of Neisseria meningitidis . J Clin Microbiol42:320–328 [CrossRef][PubMed]
    [Google Scholar]
  76. Mullins M. A., Register K. B., Bayles D. O., Loving C. L., Nicholson T. L., Brockmeier S. L., Dyer D. W., Phillips G. J.. ( 2009;). Characterization and comparative analysis of the genes encoding Haemophilus parasuis outer membrane proteins P2 and P5. J Bacteriol191:5988–6002 [CrossRef][PubMed]
    [Google Scholar]
  77. Muñoz R., Dowson C. G., Daniels M., Coffey T. J., Martin C., Hakenbeck R., Spratt B. G.. ( 1992;). Genetics of resistance to third-generation cephalosporins in clinical isolates of Streptococcus pneumoniae . Mol Microbiol6:2461–2465 [CrossRef][PubMed]
    [Google Scholar]
  78. Nagai K., Davies T. A., Jacobs M. R., Appelbaum P. C.. ( 2002;). Effects of amino acid alterations in penicillin-binding proteins (PBPs) 1a, 2b, and 2x on PBP affinities of penicillin, ampicillin, amoxicillin, cefditoren, cefuroxime, cefprozil, and cefaclor in 18 clinical isolates of penicillin-susceptible, -intermediate, and -resistant pneumococci. Antimicrob Agents Chemother46:1273–1280 [CrossRef][PubMed]
    [Google Scholar]
  79. Njanpop Lafourcade B. M., Sanou O., van der Linden M., Levina N., Karanfil M., Yaro S., Tamekloe T. A., Mueller J. E.. ( 2010;). Serotyping pneumococcal meningitis cases in the African meningitis belt by use of multiplex PCR with cerebrospinal fluid. J Clin Microbiol48:612–614 [CrossRef][PubMed]
    [Google Scholar]
  80. O’Brien K. L., Wolfson L. J., Watt J. P., Henkle E., Deloria-Knoll M., McCall N., Lee E., Mulholland K., Levine O. S., Cherian T.. Hib and Pneumococcal Global Burden of Disease Study Team ( 2009;). Burden of disease caused by Streptococcus pneumoniae in children younger than 5 years: global estimates. Lancet374:893–902 [CrossRef][PubMed]
    [Google Scholar]
  81. Obando I., Muñoz-Almagro C., Arroyo L. A., Tarrago D., Sanchez-Tatay D., Moreno-Perez D., Dhillon S. S., Esteva C., Hernandez-Bou S. et al. ( 2008;). Pediatric parapneumonic empyema, Spain. Emerg Infect Dis14:1390–1397 [CrossRef][PubMed]
    [Google Scholar]
  82. Pai R., Moore M. R., Pilishvili T., Gertz R. E., Whitney C. G., Beall B.. Active Bacterial Core Surveillance Team ( 2005;). Postvaccine genetic structure of Streptococcus pneumoniae serotype 19A from children in the United States. J Infect Dis192:1988–1995 [CrossRef][PubMed]
    [Google Scholar]
  83. Pai R., Gertz R. E., Beall B.. ( 2006;). Sequential multiplex PCR approach for determining capsular serotypes of Streptococcus pneumoniae isolates. J Clin Microbiol44:124–131 [CrossRef][PubMed]
    [Google Scholar]
  84. Parr T. R. Jr, Bryan L. E.. ( 1984;). Mechanism of resistance of an ampicillin-resistant, beta-lactamase-negative clinical isolate of Haemophilus influenzae type b to beta-lactam antibiotics. Antimicrob Agents Chemother25:747–753[PubMed][CrossRef]
    [Google Scholar]
  85. Pebody R. G., Hellenbrand W., D’Ancona F., Ruutu P.. European Union funded Pnc-EURO contributing group ( 2006;). Pneumococcal disease surveillance in Europe. Euro Surveill11:171–178[PubMed]
    [Google Scholar]
  86. Pichichero M., Casey J., Blatter M., Rothstein E., Ryall R., Bybel M., Gilmet G., Papa T.. ( 2005;). Comparative trial of the safety and immunogenicity of quadrivalent (A, C, Y, W-135) meningococcal polysaccharide-diphtheria conjugate vaccine versus quadrivalent polysaccharide vaccine in two- to ten-year-old children. Pediatr Infect Dis J24:57–62 [CrossRef][PubMed]
    [Google Scholar]
  87. Pittman M.. ( 1931;). Variation and type specificity in the bacterial species Haemophilus influenzae . J Exp Med53:471–492 [CrossRef][PubMed]
    [Google Scholar]
  88. Poehling K. A., Lafleur B. J., Szilagyi P. G., Edwards K. M., Mitchel E., Barth R., Schwartz B., Griffin M. R.. ( 2004;). Population-based impact of pneumococcal conjugate vaccine in young children. Pediatrics114:755–761 [CrossRef][PubMed]
    [Google Scholar]
  89. Pollard A. J., Perrett K. P., Beverley P. C.. ( 2009;). Maintaining protection against invasive bacteria with protein–polysaccharide conjugate vaccines. Nat Rev Immunol9:213–220 [CrossRef][PubMed]
    [Google Scholar]
  90. Prymula R., Peeters P., Chrobok V., Kriz P., Novakova E., Kaliskova E., Kohl I., Lommel P., Poolman J. et al. ( 2006;). Pneumococcal capsular polysaccharides conjugated to protein D for prevention of acute otitis media caused by both Streptococcus pneumoniae and non-typable Haemophilus influenzae: a randomised double-blind efficacy study. Lancet367:740–748 [CrossRef][PubMed]
    [Google Scholar]
  91. Ridderberg W., Fenger M. G., Nørskov-Lauritsen N.. ( 2010;). Haemophilus influenzae may be untypable by the multilocus sequence typing scheme due to a complete deletion of the fucose operon. J Med Microbiol59:740–742 [CrossRef][PubMed]
    [Google Scholar]
  92. Rossi I. A., Zuber P. L., Dumolard L., Walker D. G., Watt J.. ( 2007;). Introduction of Hib vaccine into national immunization programmes: a descriptive analysis of global trends. Vaccine25:7075–7080 [CrossRef][PubMed]
    [Google Scholar]
  93. Russell J. E., Jolley K. A., Feavers I. M., Maiden M. C., Suker J.. ( 2004;). PorA variable regions of Neisseria meningitidis . Emerg Infect Dis10:674–678[PubMed][CrossRef]
    [Google Scholar]
  94. Sadowy E., Kuch A., Gniadkowski M., Hryniewicz W.. ( 2010;). Expansion and evolution of the Streptococcus pneumoniae Spain9V–ST156 clonal complex in Poland. Antimicrob Agents Chemother54:1720–1727 [CrossRef][PubMed]
    [Google Scholar]
  95. Saha S. K., Darmstadt G. L., Baqui A. H., Hossain B., Islam M., Foster D., Al-Emran H., Naheed A., Arifeen S. E. et al. ( 2008a;). Identification of serotype in culture negative pneumococcal meningitis using sequential multiplex PCR: implication for surveillance and vaccine design. PLoS ONE3:e3576 [CrossRef][PubMed]
    [Google Scholar]
  96. Saha S. K., Darmstadt G. L., Baqui A. H., Islam N., Qazi S., Islam M., El Arifeen S., Santosham M., Black R. E., Crook D. W.. ( 2008b;). Direct detection of the multidrug resistance genome of Haemophilus influenzae in cerebrospinal fluid of children: implications for treatment of meningitis. Pediatr Infect Dis J27:49–53 [CrossRef][PubMed]
    [Google Scholar]
  97. Satola S. W., Collins J. T., Napier R., Farley M. M.. ( 2007;). Capsule gene analysis of invasive Haemophilus influenzae: accuracy of serotyping and prevalence of IS1016 among nontypeable isolates. J Clin Microbiol45:3230–3238 [CrossRef][PubMed]
    [Google Scholar]
  98. Schouls L. M., van der Ende A., van de Pol I., Schot C., Spanjaard L., Vauterin P., Wilderbeek D., Witteveen S.. ( 2005;). Increase in genetic diversity of Haemophilus influenzae serotype b (Hib) strains after introduction of Hib vaccination in The Netherlands. J Clin Microbiol43:2741–2749 [CrossRef][PubMed]
    [Google Scholar]
  99. Schouls L. M., van der Ende A., Damen M., van de Pol I.. ( 2006;). Multiple-locus variable-number tandem repeat analysis of Neisseria meningitidis yields groupings similar to those obtained by multilocus sequence typing. J Clin Microbiol44:1509–1518 [CrossRef][PubMed]
    [Google Scholar]
  100. Schwarz S., Kehrenberg C., Doublet B., Cloeckaert A.. ( 2004;). Molecular basis of bacterial resistance to chloramphenicol and florfenicol. FEMS Microbiol Rev28:519–542 [CrossRef][PubMed]
    [Google Scholar]
  101. Scott J. A.. ( 2007;). The preventable burden of pneumococcal disease in the developing world. Vaccine25:2398–2405 [CrossRef][PubMed]
    [Google Scholar]
  102. Scriver S. R., Walmsley S. L., Kau C. L., Hoban D. J., Brunton J., McGeer A., Moore T. C., Witwicki E.. Canadian Haemophilus Study Group ( 1994;). Determination of antimicrobial susceptibilities of Canadian isolates of Haemophilus influenzae and characterization of their beta-lactamases. Antimicrob Agents Chemother38:1678–1680[PubMed][CrossRef]
    [Google Scholar]
  103. Selander R. K., Caugant D. A., Ochman H., Musser J. M., Gilmour M. N., Whittam T. S.. ( 1986;). Methods of multilocus enzyme electrophoresis for bacterial population genetics and systematics. Appl Environ Microbiol51:873–884[PubMed]
    [Google Scholar]
  104. Shultz T. R., Tapsall J. W., White P. A., Newton P. J.. ( 2000;). An invasive isolate of Neisseria meningitidis showing decreased susceptibility to quinolones. Antimicrob Agents Chemother44:1116 [CrossRef][PubMed]
    [Google Scholar]
  105. Sikkema D. J., Murphy T. F.. ( 1992;). Molecular analysis of the P2 porin protein of nontypeable Haemophilus influenzae . Infect Immun60:5204–5211[PubMed]
    [Google Scholar]
  106. Sill M. L., Law D. K. S., Zhou J. W., Skinner S., Wylie J., Tsang R. S. W.. ( 2007;). Population genetics and antibiotic susceptibility of invasive Haemophilus influenzae in Manitoba, Canada, from 2000 to 2006. FEMS Immunol Med Microbiol51:270–276 [CrossRef][PubMed]
    [Google Scholar]
  107. Skoczynska A., Ruckly C., Hong E., Taha M. K.. ( 2009;). Molecular characterization of resistance to rifampicin in clinical isolates of Neisseria meningitidis . Clin Microbiol Infect15:1178–1181 [CrossRef][PubMed]
    [Google Scholar]
  108. Sørensen U. B.. ( 1993;). Typing of pneumococci by using 12 pooled antisera. J Clin Microbiol31:2097–2100[PubMed]
    [Google Scholar]
  109. St Geme J. W. III, Kumar V. V., Cutter D., Barenkamp S. J.. ( 1998;). Prevalence and distribution of the hmw and hia genes and the HMW and Hia adhesins among genetically diverse strains of nontypeable Haemophilus influenzae . Infect Immun66:364–368[PubMed]
    [Google Scholar]
  110. Suker J., Feavers I. M., Maiden M. C.. ( 1996;). Monoclonal antibody recognition of members of the meningococcal P1.10 variable region family: implications for serological typing and vaccine design. Microbiology142:63–69 [CrossRef][PubMed]
    [Google Scholar]
  111. Sukupolvi-Petty S., Grass S., St Geme J. W. III. ( 2006;). The Haemophilus influenzae type b hcsA and hcsB gene products facilitate transport of capsular polysaccharide across the outer membrane and are essential for virulence. J Bacteriol188:3870–3877 [CrossRef][PubMed]
    [Google Scholar]
  112. Taha M. K., Alonso J. M., Cafferkey M., Caugant D. A., Clarke S. C., Diggle M. A., Fox A., Frosch M., Gray S. J. et al. ( 2005;). Interlaboratory comparison of PCR-based identification and genogrouping of Neisseria meningitidis . J Clin Microbiol43:144–149 [CrossRef][PubMed]
    [Google Scholar]
  113. Taha M. K., Zarantonelli M. L., Neri A., Enriquez R., Vázquez J. A., Stefanelli P.. ( 2006;). Interlaboratory comparison of PCR-based methods for detection of penicillin G susceptibility in Neisseria meningitidis . Antimicrob Agents Chemother50:887–892 [CrossRef][PubMed]
    [Google Scholar]
  114. Taha M. K., Hedberg S. T., Szatanik M., Hong E., Ruckly C., Abad R., Bertrand S., Carion F., Claus H. et al. ( 2010;). Multicenter study for defining the breakpoint for rifampin resistance in Neisseria meningitidis by rpoB sequencing. Antimicrob Agents Chemother54:3651–3658 [CrossRef][PubMed]
    [Google Scholar]
  115. Tenover F. C., Tang Y. W., Nolte F. S., Hayden R. T., van Belkum A.. ( 2010;). Molecular Microbiology: Diagnostic Principles and Practice, 2nd edn. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  116. Thompson E. A., Feavers I. M., Maiden M. C.. ( 2003;). Antigenic diversity of meningococcal enterobactin receptor FetA, a vaccine component. Microbiology149:1849–1858 [CrossRef][PubMed]
    [Google Scholar]
  117. Thulin S., Olcén P., Fredlund H., Unemo M.. ( 2006;). Total variation in the penA gene of Neisseria meningitidis: correlation between susceptibility to β-lactam antibiotics and penA gene heterogeneity. Antimicrob Agents Chemother50:3317–3324 [CrossRef][PubMed]
    [Google Scholar]
  118. Tikhomirov E., Santamaria M., Esteves K.. ( 1997;). Meningococcal disease: public health burden and control. World Health Stat Q50:170–177[PubMed]
    [Google Scholar]
  119. Tristram S. G., Burdach J. G.. ( 2007;). Effect of cloned inhibitor-resistant TEM β-lactamases on the susceptibility of Haemophilus influenzae to amoxicillin/clavulanate. J Antimicrob Chemother60:1151–1154 [CrossRef][PubMed]
    [Google Scholar]
  120. Trotter C. L., Ramsay M. E.. ( 2007;). Vaccination against meningococcal disease in Europe: review and recommendations for the use of conjugate vaccines. FEMS Microbiol Rev31:101–107 [CrossRef][PubMed]
    [Google Scholar]
  121. Tzanakaki G., Tsolia M., Vlachou V., Theodoridou M., Pangalis A., Foustoukou M., Karpathios T., Blackwell C. C., Kremastinou J.. ( 2003;). Evaluation of non-culture diagnosis of invasive meningococcal disease by polymerase chain reaction (PCR). FEMS Immunol Med Microbiol39:31–36 [CrossRef][PubMed]
    [Google Scholar]
  122. Ubukata K., Shibasaki Y., Yamamoto K., Chiba N., Hasegawa K., Takeuchi Y., Sunakawa K., Inoue M., Konno M.. ( 2001;). Association of amino acid substitutions in penicillin-binding protein 3 with β-lactam resistance in β-lactamase-negative ampicillin-resistant Haemophilus influenzae . Antimicrob Agents Chemother45:1693–1699 [CrossRef][PubMed]
    [Google Scholar]
  123. van Belkum A., Tassios P. T., Dijkshoorn L., Haeggman S., Cookson B., Fry N. K., Fussing V., Green J., Feil E. et al. ( 2007;). Guidelines for the validation and application of typing methods for use in bacterial epidemiology. Clin Microbiol Infect13:(Suppl. 3)1–46 [CrossRef][PubMed]
    [Google Scholar]
  124. Van Eldere J., Brophy L., Loynds B., Celis P., Hancock I., Carman S., Kroll J. S., Moxon E. R.. ( 1995;). Region II of the Haemophilus influenzae type be capsulation locus is involved in serotype-specific polysaccharide synthesis. Mol Microbiol15:107–118 [CrossRef][PubMed]
    [Google Scholar]
  125. Vázquez J. A., Arreaza L., Block C., Ehrhard I., Gray S. J., Heuberger S., Hoffmann S., Kriz P., Nicolas P. et al. ( 2003;). Interlaboratory comparison of agar dilution and Etest methods for determining the MICs of antibiotics used in management of Neisseria meningitidis infections. Antimicrob Agents Chemother47:3430–3434 [CrossRef][PubMed]
    [Google Scholar]
  126. Vesikari T., Wysocki J., Chevallier B., Karvonen A., Czajka H., Arsène J. P., Lommel P., Dieussaert I., Schuerman L.. ( 2009;). Immunogenicity of the 10-valent pneumococcal non-typeable Haemophilus influenzae protein D conjugate vaccine (PHiD-CV) compared to the licensed 7vCRM vaccine. Pediatr Infect Dis J28:(Suppl. 4)S66–S76 [CrossRef][PubMed]
    [Google Scholar]
  127. Watt J. P., Wolfson L. J., O’Brien K. L., Henkle E., Deloria-Knoll M., McCall N., Lee E., Levine O. S., Hajjeh R. et al. ( 2009;). Burden of disease caused by Haemophilus influenzae type b in children younger than 5 years: global estimates. Lancet374:903–911 [CrossRef][PubMed]
    [Google Scholar]
  128. Webb D. C., Cripps A. W.. ( 1998;). Secondary structure and molecular analysis of interstrain variability in the P5 outer-membrane protein of non-typable Haemophilus influenzae isolated from diverse anatomical sites. J Med Microbiol47:1059–1067 [CrossRef][PubMed]
    [Google Scholar]
  129. Wedege E., Høiby E. A., Rosenqvist E., Bjune G.. ( 1998;). Immune responses against major outer membrane antigens of Neisseria meningitidis in vaccinees and controls who contracted meningococcal disease during the Norwegian serogroup B protection trial. Infect Immun66:3223–3231[PubMed]
    [Google Scholar]
  130. Whatmore A. M., Efstratiou A., Pickerill A. P., Broughton K., Woodard G., Sturgeon D., George R., Dowson C. G.. ( 2000;). Genetic relationships between clinical isolates of Streptococcus pneumoniae, Streptococcus oralis, and Streptococcus mitis: characterization of “Atypical” pneumococci and organisms allied to S. mitis harboring S. pneumoniae virulence factor-encoding genes. Infect Immun68:1374–1382 [CrossRef][PubMed]
    [Google Scholar]
  131. WHO ( 2007;). Pneumococcal conjugate vaccine for childhood immunization–WHO position paper. Wkly Epidemiol Rec82:93–104[PubMed]
    [Google Scholar]
  132. Winter L. E., Barenkamp S. J.. ( 2009;). Antibodies specific for the Hia adhesion proteins of nontypeable Haemophilus influenzae mediate opsonophagocytic activity. Clin Vaccine Immunol16:1040–1046 [CrossRef][PubMed]
    [Google Scholar]
  133. World Health Organization ( 2006;). WHO position paper on Haemophilus influenzae type b conjugate vaccines. (Replaces WHO position paper on Hib vaccines previously published in the Weekly Epidemiological Record). Wkly Epidemiol Rec81:445–452[PubMed]
    [Google Scholar]
  134. Yazdankhah S. P., Lindstedt B. A., Caugant D. A.. ( 2005;). Use of variable-number tandem repeats to examine genetic diversity of Neisseria meningitidis . J Clin Microbiol43:1699–1705 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.050518-0
Loading
/content/journal/micro/10.1099/mic.0.050518-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error