1887

Abstract

The phytopathogenic bacterium () strain SCRI1043 does not exhibit appreciable biofilm formation under standard laboratory conditions. Here we show that a biofilm-forming phenotype in this strain could be activated from a cryptic state by increasing intracellular levels of c-di-GMP, through overexpression of a constitutively active diguanylate cyclase (PleD*) from . Randomly obtained transposon mutants defective in the operon, involved in synthesis and translocation of poly-β-1,6--acetyl--glucosamine (PGA), were all impaired in this biofilm formation. The presence of the PGA-degrading enzyme dispersin B in the growth media prevented biofilm formation by overexpressing PleD*, further supporting the importance of PGA for biofilm formation by . Importantly, a mutant exhibited a reduction in root binding to the host plant under conditions of high intracellular c-di-GMP levels. A modest but consistent increase in transcript levels was associated with high intracellular levels of c-di-GMP. Our results indicate tight control of PGA-dependent biofilm formation by c-di-GMP in .

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.050450-0
2011-12-01
2020-01-23
Loading full text...

Full text loading...

/deliver/fulltext/micro/157/12/3340.html?itemId=/content/journal/micro/10.1099/mic.0.050450-0&mimeType=html&fmt=ahah

References

  1. Aldridge P., Paul R., Goymer P., Rainey P., Jenal U.. ( 2003;). Role of the GGDEF regulator PleD in polar development of Caulobacter crescentus . Mol Microbiol47:1695–1708 [CrossRef][PubMed]
    [Google Scholar]
  2. Altschul S. F., Madden T. L., Schäffer A. A., Zhang J., Zhang Z., Miller W., Lipman D. J.. ( 1997;). Gapped blast and psi-blast: a new generation of protein database search programs. Nucleic Acids Res25:3389–3402 [CrossRef][PubMed]
    [Google Scholar]
  3. Amikam D., Steinberger O., Shkolnik T., Ben-Ishai Z.. ( 1995;). The novel cyclic dinucleotide 3′-5′ cyclic diguanylic acid binds to p21ras and enhances DNA synthesis but not cell replication in the Molt 4 cell line. Biochem J311:921–927[PubMed]
    [Google Scholar]
  4. Ausmees N., Jonsson H., Höglund S., Ljunggren H., Lindberg M.. ( 1999;). Structural and putative regulatory genes involved in cellulose synthesis in Rhizobium leguminosarum bv. trifolii . Microbiology145:1253–1262 [CrossRef][PubMed]
    [Google Scholar]
  5. Bell K. S., Sebaihia M., Pritchard L., Holden M. T., Hyman L. J., Holeva M. C., Thomson N. R., Bentley S. D., Churcher L. J. et al. & other authors ( 2004;). Genome sequence of the enterobacterial phytopathogen Erwinia carotovora subsp. atroseptica and characterization of virulence factors. Proc Natl Acad Sci U S A101:11105–11110 [CrossRef][PubMed]
    [Google Scholar]
  6. Bobrov A. G., Kirillina O., Forman S., Mack D., Perry R. D.. ( 2008;). Insights into Yersinia pestis biofilm development: topology and co-interaction of Hms inner membrane proteins involved in exopolysaccharide production. Environ Microbiol10:1419–1432 [CrossRef][PubMed]
    [Google Scholar]
  7. Bobrov A. G., Kirillina O., Ryjenkov D. A., Waters C. M., Price P. A., Fetherston J. D., Mack D., Goldman W. E., Gomelsky M., Perry R. D.. ( 2011;). Systematic analysis of cyclic di-GMP signalling enzymes and their role in biofilm formation and virulence in Yersinia pestis . Mol Microbiol79:533–551 [CrossRef][PubMed]
    [Google Scholar]
  8. Boehm A., Steiner S., Zaehringer F., Casanova A., Hamburger F., Ritz D., Keck W., Ackermann M., Schirmer T., Jenal U.. ( 2009;). Second messenger signalling governs Escherichia coli biofilm induction upon ribosomal stress. Mol Microbiol72:1500–1516 [CrossRef][PubMed]
    [Google Scholar]
  9. Borlee B. R., Goldman A. D., Murakami K., Samudrala R., Wozniak D. J., Parsek M. R.. ( 2010;). Pseudomonas aeruginosa uses a cyclic-di-GMP-regulated adhesin to reinforce the biofilm extracellular matrix. Mol Microbiol75:827–842 [CrossRef][PubMed]
    [Google Scholar]
  10. Bossé J. T., Sinha S., Li M. S., O’Dwyer C. A., Nash J. H., Rycroft A. N., Kroll J. S., Langford P. R.. ( 2010;). Regulation of pga operon expression and biofilm formation in Actinobacillus pleuropneumoniae by σE and H-NS. J Bacteriol192:2414–2423 [CrossRef][PubMed]
    [Google Scholar]
  11. Branda S. S., Vik S., Friedman L., Kolter R.. ( 2005;). Biofilms: the matrix revisited. Trends Microbiol13:20–26 [CrossRef][PubMed]
    [Google Scholar]
  12. Choi A. H., Slamti L., Avci F. Y., Pier G. B., Maira-Litrán T.. ( 2009;). The pgaABCD locus of Acinetobacter baumannii encodes the production of poly-β-1-6-N-acetylglucosamine, which is critical for biofilm formation. J Bacteriol191:5953–5963 [CrossRef][PubMed]
    [Google Scholar]
  13. Coombs J. T., Franco C. M.. ( 2003;). Isolation and identification of actinobacteria from surface-sterilized wheat roots. Appl Environ Microbiol69:5603–5608
    [Google Scholar]
  14. Corbett M., Virtue S., Bell K., Birch P., Burr T., Hyman L., Lilley K., Poock S., Toth I., Salmond G.. ( 2005;). Identification of a new quorum-sensing-controlled virulence factor in Erwinia carotovora subsp. atroseptica secreted via the type II targeting pathway. Mol Plant Microbe Interact18:334–342 [CrossRef][PubMed]
    [Google Scholar]
  15. Cotter P. A., Stibitz S.. ( 2007;). c-di-GMP-mediated regulation of virulence and biofilm formation. Curr Opin Microbiol10:17–23 [CrossRef][PubMed]
    [Google Scholar]
  16. Coulthurst S. J., Lilley K. S., Salmond G. P. C.. ( 2006;). Genetic and proteomic analysis of the role of luxS in the enteric phytopathogen, Erwinia carotovora . Mol Plant Pathol7:31–45 [CrossRef][PubMed]
    [Google Scholar]
  17. Danhorn T., Fuqua C.. ( 2007;). Biofilm formation by plant-associated bacteria. Annu Rev Microbiol61:401–422 [CrossRef][PubMed]
    [Google Scholar]
  18. Darby C., Hsu J. W., Ghori N., Falkow S.. ( 2002;). Caenorhabditis elegans: plague bacteria biofilm blocks food intake. Nature417:243–244
    [Google Scholar]
  19. Demarre G., Guérout A. M., Matsumoto-Mashimo C., Rowe-Magnus D. A., Marlière P., Mazel D.. ( 2005;). A new family of mobilizable suicide plasmids based on broad host range R388 plasmid (IncW) and RP4 plasmid (IncPalpha) conjugative machineries and their cognate Escherichia coli host strains. Res Microbiol156:245–255[PubMed][CrossRef]
    [Google Scholar]
  20. Hickman J. W., Harwood C. S.. ( 2008;). Identification of FleQ from Pseudomonas aeruginosa as a c-di-GMP-responsive transcription factor. Mol Microbiol69:376–389 [CrossRef][PubMed]
    [Google Scholar]
  21. Hinnebusch B. J., Erickson D. L.. ( 2008;). Yersinia pestis biofilm in the flea vector and its role in the transmission of plague. Curr Top Microbiol Immunol322:229–248 [CrossRef][PubMed]
    [Google Scholar]
  22. Hinsa S. M., Espinosa-Urgel M., Ramos J. L., O’Toole G. A.. ( 2003;). Transition from reversible to irreversible attachment during biofilm formation by Pseudomonas fluorescens WCS365 requires an ABC transporter and a large secreted protein. Mol Microbiol49:905–918
    [Google Scholar]
  23. Hinton J. C., Salmond G. P.. ( 1987;). Use of TnphoA to enrich for extracellular enzyme mutants of Erwinia carotovora subspecies carotovora . Mol Microbiol1:381–386 [CrossRef][PubMed]
    [Google Scholar]
  24. Itoh Y., Wang X., Hinnebusch B. J., Preston J. F. III, Romeo T.. ( 2005;). Depolymerization of β-1,6-N-acetyl-d-glucosamine disrupts the integrity of diverse bacterial biofilms. J Bacteriol187:382–387 [CrossRef][PubMed]
    [Google Scholar]
  25. Izano E. A., Sadovskaya I., Vinogradov E., Mulks M. H., Velliyagounder K., Ragunath C., Kher W. B., Ramasubbu N., Jabbouri S. et al. & other authors ( 2007;). Poly-N-acetylglucosamine mediates biofilm formation and antibiotic resistance in Actinobacillus pleuropneumoniae . Microb Pathog43:1–9 [CrossRef][PubMed]
    [Google Scholar]
  26. Izano E. A., Sadovskaya I., Wang H., Vinogradov E., Ragunath C., Ramasubbu N., Jabbouri S., Perry M. B., Kaplan J. B.. ( 2008;). Poly-N-acetylglucosamine mediates biofilm formation and detergent resistance in Aggregatibacter actinomycetemcomitans . Microb Pathog44:52–60 [CrossRef][PubMed]
    [Google Scholar]
  27. Jonas K., Edwards A. N., Simm R., Romeo T., Römling U., Melefors O.. ( 2008;). The RNA binding protein CsrA controls cyclic di-GMP metabolism by directly regulating the expression of GGDEF proteins. Mol Microbiol70:236–257 [CrossRef][PubMed]
    [Google Scholar]
  28. Jonas K., Melefors O., Römling U.. ( 2009;). Regulation of c-di-GMP metabolism in biofilms. Future Microbiol4:341–358 [CrossRef][PubMed]
    [Google Scholar]
  29. Kaplan J. B., Ragunath C., Ramasubbu N., Fine D. H.. ( 2003;). Detachment of Actinobacillus actinomycetemcomitans biofilm cells by an endogenous β-hexosaminidase activity. J Bacteriol185:4693–4698 [CrossRef][PubMed]
    [Google Scholar]
  30. Kaplan J. B., Velliyagounder K., Ragunath C., Rohde H., Mack D., Knobloch J. K., Ramasubbu N.. ( 2004;). Genes involved in the synthesis and degradation of matrix polysaccharide in Actinobacillus actinomycetemcomitans and Actinobacillus pleuropneumoniae biofilms. J Bacteriol186:8213–8220 [CrossRef][PubMed]
    [Google Scholar]
  31. Kirillina O., Fetherston J. D., Bobrov A. G., Abney J., Perry R. D.. ( 2004;). HmsP, a putative phosphodiesterase, and HmsT, a putative diguanylate cyclase, control Hms-dependent biofilm formation in Yersinia pestis . Mol Microbiol54:75–88 [CrossRef][PubMed]
    [Google Scholar]
  32. Lee V. T., Matewish J. M., Kessler J. L., Hyodo M., Hayakawa Y., Lory S.. ( 2007;). A cyclic-di-GMP receptor required for bacterial exopolysaccharide production. Mol Microbiol65:1474–1484 [CrossRef][PubMed]
    [Google Scholar]
  33. Mack D., Fischer W., Krokotsch A., Leopold K., Hartmann R., Egge H., Laufs R.. ( 1996;). The intercellular adhesin involved in biofilm accumulation of Staphylococcus epidermidis is a linear beta-1,6-linked glucosaminoglycan: purification and structural analysis. J Bacteriol178:175–183[PubMed]
    [Google Scholar]
  34. O’Toole G. A., Kolter R.. ( 1998;). Flagellar and twitching motility are necessary for Pseudomonas aeruginosa biofilm development. Mol Microbiol30:295–304 [CrossRef][PubMed]
    [Google Scholar]
  35. Parise G., Mishra M., Itoh Y., Romeo T., Deora R.. ( 2007;). Role of a putative polysaccharide locus in Bordetella biofilm development. J Bacteriol189:750–760 [CrossRef][PubMed]
    [Google Scholar]
  36. Paul R., Weiser S., Amiot N. C., Chan C., Schirmer T., Giese B., Jenal U.. ( 2004;). Cell cycle-dependent dynamic localization of a bacterial response regulator with a novel di-guanylate cyclase output domain. Genes Dev18:715–727 [CrossRef][PubMed]
    [Google Scholar]
  37. Paul R., Abel S., Wassmann P., Beck A., Heerklotz H., Jenal U.. ( 2007;). Activation of the diguanylate cyclase PleD by phosphorylation-mediated dimerization. J Biol Chem282:29170–29177 [CrossRef][PubMed]
    [Google Scholar]
  38. Pérez-Mendoza D., de la Cruz F.. ( 2009;). Escherichia coli genes affecting recipient ability in plasmid conjugation: are there any?. BMC Genomics10:71 [CrossRef][PubMed]
    [Google Scholar]
  39. Pérez-Mendoza D., Coulthurst S. J., Humphris S., Campbell E., Welch M., Toth I. K., Salmond G. P. C.. ( 2011;). A multi-repeat adhesin of the phytopathogen, Pectobacterium atrosepticum, is secreted by a type I pathway and is subject to complex regulation involving a non-canonical diguanylate cyclase. Mol Microbiol
    [Google Scholar]
  40. Pesavento C., Becker G., Sommerfeldt N., Possling A., Tschowri N., Mehlis A., Hengge R.. ( 2008;). Inverse regulatory coordination of motility and curli-mediated adhesion in Escherichia coli . Genes Dev22:2434–2446 [CrossRef][PubMed]
    [Google Scholar]
  41. Robertsen B. K., Aman P., Darvill A. G., Mcneil M., Albersheim P.. ( 1981;). Host–symbiont interactions: V. The structure of acidic extracellular polysaccharides secreted by Rhizobium leguminosarum and Rhizobium trifolii. . Plant Physiol67:389–400 [CrossRef][PubMed]
    [Google Scholar]
  42. Römling U., Gomelsky M., Galperin M. Y.. ( 2005;). c-di-GMP: the dawning of a novel bacterial signalling system. Mol Microbiol57:629–639 [CrossRef][PubMed]
    [Google Scholar]
  43. Ross P., Weinhouse H., Aloni Y., Michaeli D., Weinberger-Ohana P., Mayer R., Braun S., de Vroom E., van der Marel G. A. et al. & other authors ( 1987;). Regulation of cellulose synthesis in Acetobacter xylinum by cyclic diguanylic acid. Nature325:279–281 [CrossRef][PubMed]
    [Google Scholar]
  44. Ross P., Mayer R., Weinhouse H., Amikam D., Huggirat Y., Benziman M., de Vroom E., Fidder A., de Paus P. et al. & other authors ( 1990;). The cyclic diguanylic acid regulatory system of cellulose synthesis in Acetobacter xylinum. Chemical synthesis and biological activity of cyclic nucleotide dimer, trimer, and phosphothioate derivatives. J Biol Chem265:18933–18943[PubMed]
    [Google Scholar]
  45. Ryder C., Byrd M., Wozniak D. J.. ( 2007;). Role of polysaccharides in Pseudomonas aeruginosa biofilm development. Curr Opin Microbiol10:644–648 [CrossRef][PubMed]
    [Google Scholar]
  46. Smith D. S.. ( 2005;). Development of a Positive Selection Strategy to Investigate the Regulation of Quorum Sensing in Erwinia
    [Google Scholar]
  47. Spiers A. J., Kahn S. G., Bohannon J., Travisano M., Rainey P. B.. ( 2002;). Adaptive divergence in experimental populations of Pseudomonas fluorescens. I. Genetic and phenotypic bases of wrinkly spreader fitness. Genetics161:33–46[PubMed]
    [Google Scholar]
  48. Sudarsan N., Lee E. R., Weinberg Z., Moy R. H., Kim J. N., Link K. H., Breaker R. R.. ( 2008;). Riboswitches in eubacteria sense the second messenger cyclic di-GMP. Science321:411–413 [CrossRef][PubMed]
    [Google Scholar]
  49. Tagliabue L., Antoniani D., Maciag A., Bocci P., Raffaelli N., Landini P.. ( 2010;). The diguanylate cyclase YddV controls production of the exopolysaccharide poly-N-acetylglucosamine (PNAG) through regulation of the PNAG biosynthetic pgaABCD operon. Microbiology156:2901–2911 [CrossRef][PubMed]
    [Google Scholar]
  50. Takle G. W., Toth I. K., Brurberg M. B.. ( 2007;). Evaluation of reference genes for real-time RT-PCR expression studies in the plant pathogen Pectobacterium atrosepticum . BMC Plant Biol7:50 [CrossRef][PubMed]
    [Google Scholar]
  51. Tamayo R., Pratt J. T., Camilli A.. ( 2007;). Roles of cyclic diguanylate in the regulation of bacterial pathogenesis. Annu Rev Microbiol61:131–148 [CrossRef][PubMed]
    [Google Scholar]
  52. Toh E., Kurtz H. D. Jr, Brun Y. V.. ( 2008;). Characterization of the Caulobacter crescentus holdfast polysaccharide biosynthesis pathway reveals significant redundancy in the initiating glycosyltransferase and polymerase steps. J Bacteriol190:7219–7231 [CrossRef][PubMed]
    [Google Scholar]
  53. Toth I. K., Mulholland V., Cooper V., Bentley S., Shih Y. L., Perombelon M. C. M., Salmond G. P. C.. ( 1997;). Generalized transduction in the potato blackleg pathogen Erwinia carotovora subsp. atroseptica by bacteriophage M1. Microbiology143:2433–2438 [CrossRef]
    [Google Scholar]
  54. Wang X., Preston J. F. III, Romeo T.. ( 2004;). The pgaABCD locus of Escherichia coli promotes the synthesis of a polysaccharide adhesin required for biofilm formation. J Bacteriol186:2724–2734 [CrossRef][PubMed]
    [Google Scholar]
  55. Wang X., Dubey A. K., Suzuki K., Baker C. S., Babitzke P., Romeo T.. ( 2005;). CsrA post-transcriptionally represses pgaABCD, responsible for synthesis of a biofilm polysaccharide adhesin of Escherichia coli . Mol Microbiol56:1648–1663 [CrossRef][PubMed]
    [Google Scholar]
  56. Yousef F., Espinosa-Urgel M.. ( 2007;). In silico analysis of large microbial surface proteins. Res Microbiol158:545–550 [CrossRef][PubMed]
    [Google Scholar]
  57. Zambon J. J.. ( 1985;). Actinobacillus actinomycetemcomitans in human periodontal disease. J Clin Periodontol12:1–20 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.050450-0
Loading
/content/journal/micro/10.1099/mic.0.050450-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error