1887

Abstract

Human salmonellosis infections are usually acquired via the food chain as a result of the ability of serovars to colonize and persist within the gastrointestinal tract of their hosts. In addition, after food ingestion and in order to cause foodborne disease in humans, must be able to resist several deleterious stress conditions which are part of the host defence against infections. This review gives an overview of the main defensive mechanisms involved in the response to the extreme acid conditions of the stomach, and the elevated concentrations of bile salts, osmolytes and commensal bacterial metabolites, and the low oxygen tension conditions of the mammalian and avian gastrointestinal tracts.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.050351-0
2011-12-01
2019-10-19
Loading full text...

Full text loading...

/deliver/fulltext/micro/157/12/3268.html?itemId=/content/journal/micro/10.1099/mic.0.050351-0&mimeType=html&fmt=ahah

References

  1. Ahmer B. M. M.. ( 2004;). Cell-to-cell signalling in Escherichia coli and Salmonella enterica. . Mol Microbiol 52:, 933–945. [CrossRef][PubMed]
    [Google Scholar]
  2. Ahmer B. M., van Reeuwijk J., Timmers C. D., Valentine P. J., Heffron F.. ( 1998;). Salmonella typhimurium encodes an SdiA homolog, a putative quorum sensor of the LuxR family, that regulates genes on the virulence plasmid. . J Bacteriol 180:, 1185–1193.[PubMed]
    [Google Scholar]
  3. Alonso-Hernando A., Alonso-Calleja C., Capita R.. ( 2010;). Effects of exposure to poultry chemical decontaminants on the membrane fluidity of Listeria monocytogenes and Salmonella enterica strains. . Int J Food Microbiol 137:, 130–136. [CrossRef][PubMed]
    [Google Scholar]
  4. Alpuche Aranda C. M., Swanson J. A., Loomis W. P., Miller S. I.. ( 1992;). Salmonella typhimurium activates virulence gene transcription within acidified macrophage phagosomes. . Proc Natl Acad Sci U S A 89:, 10079–10083. [CrossRef][PubMed]
    [Google Scholar]
  5. Álvarez-Ordóñez A., Fernández A., López M., Arenas R., Bernardo A.. ( 2008;). Modifications in membrane fatty acid composition of Salmonella typhimurium in response to growth conditions and their effect on heat resistance. . Int J Food Microbiol 123:, 212–219. [CrossRef][PubMed]
    [Google Scholar]
  6. Álvarez-Ordóñez A., Fernández A., Bernardo A., López M.. ( 2009a;). Comparison of acids on the induction of an acid tolerance response in Salmonella Typhimurium, consequences for food safety. . Meat Sci 81:, 65–70. [CrossRef]
    [Google Scholar]
  7. Álvarez-Ordóñez A., Fernández A., López M., Bernardo A.. ( 2009b;). Relationship between membrane fatty acid composition and heat resistance of acid and cold stressed Salmonella Senftenberg CECT 4384. . Food Microbiol 26:, 347–353. [CrossRef][PubMed]
    [Google Scholar]
  8. Álvarez-Ordóñez A., Fernández A., Bernardo A., López M.. ( 2010a;). Acid tolerance in Salmonella Typhimurium induced by culturing in the presence of organic acids at different growth temperatures. . Food Microbiol 27:, 44–49. [CrossRef][PubMed]
    [Google Scholar]
  9. Álvarez-Ordóñez A., Fernández A., Bernardo A., López M.. ( 2010b;). Arginine and lysine decarboxylases and the acid tolerance response of Salmonella Typhimurium. . Int J Food Microbiol 136:, 278–282. [CrossRef][PubMed]
    [Google Scholar]
  10. Álvarez-Ordóñez A., Halisch J., Prieto M.. ( 2010c;). Changes in Fourier transform infrared spectra of Salmonella enterica serovars Typhimurium and Enteritidis after adaptation to stressful growth conditions. . Int J Food Microbiol 142:, 97–105. [CrossRef][PubMed]
    [Google Scholar]
  11. Álvarez-Ordóñez A., Prieto M., Bernardo A., Hill C., López M.. ( 2011;). The Acid Tolerance response of Salmonella spp.: an adaptive strategy to survive in stressful environments prevailing in foods and the host. . Food Res Int. [CrossRef]
    [Google Scholar]
  12. Ammendola S., Pasquali P., Pacello F., Rotilio G., Castor M., Libby S. J., Figueroa-Bossi N., Bossi L., Fang F. C., Battistoni A.. ( 2008;). Regulatory and structural differences in the Cu,Zn-superoxide dismutases of Salmonella enterica and their significance for virulence. . J Biol Chem 283:, 13688–13699. [CrossRef][PubMed]
    [Google Scholar]
  13. Antunes L. C., Andersen S. K., Menendez A., Arena E. T., Han J., Ferreira R. B., Borchers C. H., Finlay B. B.. ( 2011;). Metabolomics reveals phospholipids as important nutrient sources during Salmonella growth in bile in vitro and in vivo. . J Bacteriol 193:, 4719–4725. [CrossRef][PubMed]
    [Google Scholar]
  14. Audia J. P., Webb C. C., Foster J. W.. ( 2001;). Breaking through the acid barrier: an orchestrated response to proton stress by enteric bacteria. . Int J Med Microbiol 291:, 97–106. [CrossRef][PubMed]
    [Google Scholar]
  15. Bader M. W., Navarre W. W., Shiau W., Nikaido H., Frye J. G., McClelland M., Fang F. C., Miller S. I.. ( 2003;). Regulation of Salmonella typhimurium virulence gene expression by cationic antimicrobial peptides. . Mol Microbiol 50:, 219–230. [CrossRef][PubMed]
    [Google Scholar]
  16. Balaji B., O’Connor K., Lucas J. R., Anderson J. M., Csonka L. N.. ( 2005;). Timing of induction of osmotically controlled genes in Salmonella enterica serovar Typhimurium, determined with quantitative real-time reverse transcription-PCR. . Appl Environ Microbiol 71:, 8273–8283. [CrossRef][PubMed]
    [Google Scholar]
  17. Bang I. S., Kim B. H., Foster J. W., Park Y. K.. ( 2000;). OmpR regulates the stationary-phase acid tolerance response of Salmonella enterica serovar Typhimurium. . J Bacteriol 182:, 2245–2252. [CrossRef][PubMed]
    [Google Scholar]
  18. Bang I. S., Audia J. P., Park Y. K., Foster J. W.. ( 2002;). Autoinduction of the ompR response regulator by acid shock and control of the Salmonella enterica acid tolerance response. . Mol Microbiol 44:, 1235–1250. [CrossRef][PubMed]
    [Google Scholar]
  19. Bearson B. L., Bearson S. M.. ( 2008;). The role of the QseC quorum-sensing sensor kinase in colonization and norepinephrine-enhanced motility of Salmonella enterica serovar Typhimurium. . Microb Pathog 44:, 271–278. [CrossRef][PubMed]
    [Google Scholar]
  20. Bearson B. L., Wilson L., Foster J. W.. ( 1998;). A low pH-inducible, PhoPQ-dependent acid tolerance response protects Salmonella typhimurium against inorganic acid stress. . J Bacteriol 180:, 2409–2417.[PubMed]
    [Google Scholar]
  21. Bearson S. M. D., Bearson B. L., Rasmussen M. A.. ( 2006;). Identification of Salmonella enterica serovar Typhimurium genes important for survival in the swine gastric environment. . Appl Environ Microbiol 72:, 2829–2836. [CrossRef][PubMed]
    [Google Scholar]
  22. Bearson B. L., Bearson S. M., Uthe J. J., Dowd S. E., Houghton J. O., Lee I., Toscano M. J., Lay D. C. Jr. ( 2008;). Iron regulated genes of Salmonella enterica serovar Typhimurium in response to norepinephrine and the requirement of fepDGC for norepinephrine-enhanced growth. . Microbes Infect 10:, 807–816. [CrossRef][PubMed]
    [Google Scholar]
  23. Begley M., Gahan C. G., Hill C.. ( 2005;). The interaction between bacteria and bile. . FEMS Microbiol Rev 29:, 625–651. [CrossRef][PubMed]
    [Google Scholar]
  24. Beney L., Gervais P.. ( 2001;). Influence of the fluidity of the membrane on the response of microorganisms to environmental stresses. . Appl Microbiol Biotechnol 57:, 34–42. [CrossRef][PubMed]
    [Google Scholar]
  25. Bowden S. D., Ramachandran V. K., Knudsen G. M., Hinton J. C. D., Thompson A.. ( 2010;). An incomplete TCA cycle increases survival of Salmonella Typhimurium during infection of resting and activated murine macrophages. . PLoS ONE 5:, e13871. [CrossRef][PubMed]
    [Google Scholar]
  26. Boyen F., Eeckhaut V., Van Immerseel F., Pasmans F., Ducatelle R., Haesebrouck F.. ( 2009;). Quorum sensing in veterinary pathogens: mechanisms, clinical importance and future perspectives. . Vet Microbiol 135:, 187–195. [CrossRef][PubMed]
    [Google Scholar]
  27. Bremer E., Krämer R.. ( 2000;). Coping with osmotic challenges: osmoregulation through accumulation and release of compatible solutes in bacteria. . In Bacterial Stress Responses, pp. 79–97. Edited by Storz G., Hengge-Aronis R... Washington, DC:: American Society for Microbiology;.
    [Google Scholar]
  28. Cairney J., Booth I. R., Higgins C. F.. ( 1985;). Salmonella typhimurium proP gene encodes a transport system for the osmoprotectant betaine. . J Bacteriol 164:, 1218–1223.[PubMed]
    [Google Scholar]
  29. Chang Y. Y., Cronan J. E. Jr. ( 1999;). Membrane cyclopropane fatty acid content is a major factor in acid resistance of Escherichia coli. . Mol Microbiol 33:, 249–259. [CrossRef][PubMed]
    [Google Scholar]
  30. Charles R. C., Harris J. B., Chase M. R., Lebrun L. M., Sheikh A., LaRocque R. C., Logvinenko T., Rollins S. M., Tarique A. et al. & other authors ( 2009;). Comparative proteomic analysis of the PhoP regulon in Salmonella enterica serovar Typhi versus Typhimurium. . PLoS ONE 4:, e6994. [CrossRef][PubMed]
    [Google Scholar]
  31. Chatfield S. N., Dorman C. J., Hayward C., Dougan G.. ( 1991;). Role of ompR-dependent genes in Salmonella typhimurium virulence: mutants deficient in both ompC and ompF are attenuated in vivo. . Infect Immun 59:, 449–452.[PubMed]
    [Google Scholar]
  32. Choi J., Shin D., Ryu S.. ( 2007;). Implication of quorum sensing in Salmonella enterica serovar Typhimurium virulence: the luxS gene is necessary for expression of genes in pathogenicity island 1. . Infect Immun 75:, 4885–4890. [CrossRef][PubMed]
    [Google Scholar]
  33. Coynault C., Robbe-Saule V., Norel F.. ( 1996;). Virulence and vaccine potential of Salmonella typhimurium mutants deficient in the expression of the RpoS (σS) regulon. . Mol Microbiol 22:, 149–160. [CrossRef][PubMed]
    [Google Scholar]
  34. Crawford R. W., Gibson D. L., Kay W. W., Gunn J. S.. ( 2008;). Identification of a bile-induced exopolysaccharide required for Salmonella biofilm formation on gallstone surfaces. . Infect Immun 76:, 5341–5349. [CrossRef][PubMed]
    [Google Scholar]
  35. Crawford R. W., Reeve K. E., Gunn J. S.. ( 2010a;). Flagellated but not hyperfimbriated Salmonella enterica serovar Typhimurium attaches to and forms biofilms on cholesterol-coated surfaces. . J Bacteriol 192:, 2981–2990. [CrossRef][PubMed]
    [Google Scholar]
  36. Crawford R. W., Rosales-Reyes R., Ramírez-Aguilar Mde. L., Chapa-Azuela O., Alpuche-Aranda C., Gunn J. S.. ( 2010b;). Gallstones play a significant role in Salmonella spp. gallbladder colonization and carriage. . Proc Natl Acad Sci U S A 107:, 4353–4358. [CrossRef][PubMed]
    [Google Scholar]
  37. Crouch M.-L., Becker L. A., Bang I. S., Tanabe H., Ouellette A. J., Fang F. C.. ( 2005;). The alternative sigma factor σE is required for resistance of Salmonella enterica serovar Typhimurium to anti-microbial peptides. . Mol Microbiol 56:, 789–799. [CrossRef][PubMed]
    [Google Scholar]
  38. Csonka L. N., Epstein W.. ( 1996;). Osmoregulation. . In E. coli and Salmonella: Cellular and Molecular Biology, vol. 1, pp. 1210–1223. Edited by Neidhardt F. C., Curtiss R. III, Ingraham J., Llin E. C., Clow K. B., Magasanik B., Reznikoff W. S., Riley M., Schaechter M., Umbarger H. E... Washington, DC:: American Society for Microbiology;.
    [Google Scholar]
  39. Curtiss R. III, Wanda S. Y., Gunn B. M., Zhang X., Tinge S. A., Ananthnarayan V., Mo H., Wang S., Kong W.. ( 2009;). Salmonella enterica serovar Typhimurium strains with regulated delayed attenuation in vivo. . Infect Immun 77:, 1071–1082. [CrossRef][PubMed]
    [Google Scholar]
  40. de Jonge R., Ritmeester W. S., van Leusden F. M.. ( 2003;). Adaptive responses of Salmonella enterica serovar Typhimurium DT104 and other S. Typhimurium strains and Escherichia coli O157 to low pH environments. . J Appl Microbiol 94:, 625–632. [CrossRef][PubMed]
    [Google Scholar]
  41. Domínguez-Bernal G., Tierrez A., Bartolomé A., Martínez-Pulgarín S., Salguero F. J., Antonio Orden J., de la Fuente R.. ( 2008;). Salmonella enterica serovar Choleraesuis derivatives harbouring deletions in rpoS and phoP regulatory genes are attenuated in pigs, and survive and multiply in porcine intestinal macrophages and fibroblasts, respectively. . Vet Microbiol 130:, 298–311. [CrossRef][PubMed]
    [Google Scholar]
  42. Dufourc E. J., Smith I. C. P., Jarrell H. C.. ( 1984;). Role of cyclopropane moieties in the lipid properties of biological membranes: a 2H NMR structural and dynamical approach. . Biochem 23:, 2300–2309. [CrossRef]
    [Google Scholar]
  43. Dyszel J. L., Smith J. N., Lucas D. E., Soares J. A., Swearingen M. C., Vross M. A., Young G. M., Ahmer B. M.. ( 2010;). Salmonella enterica serovar Typhimurium can detect acyl homoserine lactone production by Yersinia enterocolitica in mice. . J Bacteriol 192:, 29–37. [CrossRef][PubMed]
    [Google Scholar]
  44. EFSA ( 2008;). A quantitative microbiological risk assessment on Salmonella in meat: source attribution for human salmonellosis from meat. . EFSA J 625:, 1–32.
    [Google Scholar]
  45. EFSA ( 2011;). The European Union summary report on trends and sources of zoonoses, zoonotic agents and food-borne outbreaks in 2009. . EFSA J 9:, 2090.
    [Google Scholar]
  46. Ellermeier J. R., Slauch J. M.. ( 2008;). Fur regulates expression of the Salmonella pathogenicity island 1 type III secretion system through HilD. . J Bacteriol 190:, 476–486. [CrossRef][PubMed]
    [Google Scholar]
  47. Eriksson S., Lucchini S., Thompson A., Rhen M., Hinton J. C.. ( 2003;). Unravelling the biology of macrophage infection by gene expression profiling of intracellular Salmonella enterica. . Mol Microbiol 47:, 103–118. [CrossRef][PubMed]
    [Google Scholar]
  48. Fang F. C., Libby S. J., Buchmeier N. A., Loewen P. C., Switala J., Harwood J., Guiney D. G.. ( 1992;). The alternative σ factor katF (rpoS) regulates Salmonella virulence. . Proc Natl Acad Sci U S A 89:, 11978–11982. [CrossRef][PubMed]
    [Google Scholar]
  49. Farris C., Sanowar S., Bader M. W., Pfuetzner R., Miller S. I.. ( 2010;). Antimicrobial peptides activate the Rcs regulon through the outer membrane lipoprotein RcsF. . J Bacteriol 192:, 4894–4903. [CrossRef][PubMed]
    [Google Scholar]
  50. Fass E., Groisman E. A.. ( 2009;). Control of Salmonella pathogenicity island-2 gene expression. . Curr Opin Microbiol 12:, 199–204. [CrossRef][PubMed]
    [Google Scholar]
  51. Fink R. C., Evans M. R., Porwollik S., Vázquez-Torres A., Jones-Carson J., Troxell B., Libby S. J., McClelland M., Hassan H. M.. ( 2007;). FNR is a global regulator of virulence and anaerobic metabolism in Salmonella enterica serovar Typhimurium (ATCC 14028s). . J Bacteriol 189:, 2262–2273. [CrossRef][PubMed]
    [Google Scholar]
  52. Foster J. W.. ( 2000;). Microbial responses to acid stress. . In Bacterial Stress Responses, pp. 99–115. Edited by Storz G., Hengge-Aronis R... Washington, DC:: American Society for Microbiology;.
    [Google Scholar]
  53. Frymier J. S., Reed T. D., Fletcher S. A., Csonka L. N.. ( 1997;). Characterization of transcriptional regulation of the kdp operon of Salmonella typhimurium. . J Bacteriol 179:, 3061–3063.[PubMed]
    [Google Scholar]
  54. Gahan C. G. M., Hill C.. ( 1999;). The relationship between acid stress responses and virulence in Salmonella typhimurium and Listeria monocytogenes. . Int J Food Microbiol 50:, 93–100. [CrossRef][PubMed]
    [Google Scholar]
  55. García-Estepa R., Cánovas D., Iglesias-Guerra F., Ventosa A., Csonka L. N., Nieto J. J., Vargas C.. ( 2006;). Osmoprotection of Salmonella enterica serovar Typhimurium by Nγ-acetyldiaminobutyrate, the precursor of the compatible solute ectoine. . Syst Appl Microbiol 29:, 626–633. [CrossRef][PubMed]
    [Google Scholar]
  56. García Véscovi E., Soncini F. C., Groisman E. A.. ( 1996;). Mg2+ as an extracellular signal: environmental regulation of Salmonella virulence. . Cell 84:, 165–174. [CrossRef][PubMed]
    [Google Scholar]
  57. Gawande P. V., Bhagwat A. A.. ( 2002;). Inoculation onto solid surfaces protects Salmonella spp. during acid challenge: a model study using polyethersulfone membranes. . Appl Environ Microbiol 68:, 86–92. [CrossRef][PubMed]
    [Google Scholar]
  58. Grogan D. W., Cronan J. E. Jr. ( 1997;). Cyclopropane ring formation in membrane lipids of bacteria. . Microbiol Mol Biol Rev 61:, 429–441.[PubMed]
    [Google Scholar]
  59. Groisman E. A.. ( 2001;). The pleiotropic two-component regulatory system PhoP-PhoQ. . J Bacteriol 183:, 1835–1842. [CrossRef][PubMed]
    [Google Scholar]
  60. Gunn J. S.. ( 2000;). Mechanisms of bacterial resistance and response to bile. . Microbes Infect 2:, 907–913. [CrossRef][PubMed]
    [Google Scholar]
  61. Hall H. K., Foster J. W.. ( 1996;). The role of fur in the acid tolerance response of Salmonella typhimurium is physiologically and genetically separable from its role in iron acquisition. . J Bacteriol 178:, 5683–5691.[PubMed]
    [Google Scholar]
  62. Haque M., Hirai Y., Yokota K., Mori N., Jahan I., Ito H., Hotta H., Yano I., Kanemasa Y., Oguma K.. ( 1996;). Lipid profile of Helicobacter spp.: presence of cholesteryl glucoside as a characteristic feature. . J Bacteriol 178:, 2065–2070.[PubMed]
    [Google Scholar]
  63. Heithoff D. M., Conner C. P., Hanna P. C., Julio S. M., Hentschel U., Mahan M. J.. ( 1997;). Bacterial infection as assessed by in vivo gene expression. . Proc Natl Acad Sci U S A 94:, 934–939. [CrossRef][PubMed]
    [Google Scholar]
  64. Heithoff D. M., Enioutina E. Y., Daynes R. A., Sinsheimer R. L., Low D. A., Mahan M. J.. ( 2001;). Salmonella DNA adenine methylase mutants confer cross-protective immunity. . Infect Immun 69:, 6725–6730. [CrossRef][PubMed]
    [Google Scholar]
  65. Hengge-Aronis R.. ( 2002;). Signal transduction and regulatory mechanisms involved in control of the σS (RpoS) subunit of RNA polymerase. . Microbiol Mol Biol Rev 66:, 373–395. [CrossRef][PubMed]
    [Google Scholar]
  66. Hohmann E. L.. ( 2001;). Nontyphoidal salmonellosis. . Clin Infect Dis 32:, 263–269. [CrossRef][PubMed]
    [Google Scholar]
  67. Howden C. W., Hunt R. H.. ( 1987;). Relationship between gastric secretion and infection. . Gut 28:, 96–107. [CrossRef][PubMed]
    [Google Scholar]
  68. Howells A. M., Bullifent H. L., Dhaliwal K., Griffin K., García de Castro A., Frith G., Tunnacliffe A., Titball R. W.. ( 2002;). Role of trehalose biosynthesis in environmental survival and virulence of Salmonella enterica serovar Typhimurium. . Res Microbiol 153:, 281–287. [CrossRef][PubMed]
    [Google Scholar]
  69. Ibanez-Ruiz M., Robbe-Saule V., Hermant D., Labrude S., Norel F.. ( 2000;). Identification of RpoS (σS)-regulated genes in Salmonella enterica serovar Typhimurium. . J Bacteriol 182:, 5749–5756. [CrossRef][PubMed]
    [Google Scholar]
  70. Jesudhasan P. R., Cepeda M. L., Widmer K., Dowd S. E., Soni K. A., Hume M. E., Zhu J., Pillai S. D.. ( 2010;). Transcriptome analysis of genes controlled by luxS/autoinducer-2 in Salmonella enterica serovar Typhimurium. . Foodborne Pathog Dis 7:, 399–410. [CrossRef][PubMed]
    [Google Scholar]
  71. Johnson L. R.. ( 2001;). Gastric secretion. . In Gastrointestinal Physiology, , 6th edn., pp. 75–94. Edited by Johnson L. R... St Louis, MO:: Mosby;.
    [Google Scholar]
  72. Karasova D., Sebkova A., Vrbas V., Havlickova H., Sisak F., Rychlik I.. ( 2009;). Comparative analysis of Salmonella enterica serovar Enteritidis mutants with a vaccine potential. . Vaccine 27:, 5265–5270. [CrossRef][PubMed]
    [Google Scholar]
  73. Kieboom J., Abee T.. ( 2006;). Arginine-dependent acid resistance in Salmonella enterica serovar Typhimurium. . J Bacteriol 188:, 5650–5653. [CrossRef][PubMed]
    [Google Scholar]
  74. Kim C. C., Falkow S.. ( 2004;). Delineation of upstream signaling events in the Salmonella pathogenicity island 2 transcriptional activation pathway. . J Bacteriol 186:, 4694–4704. [CrossRef][PubMed]
    [Google Scholar]
  75. Kim B. H., Kim S., Kim H. G., Lee J., Lee I. S., Park Y. K.. ( 2005;). The formation of cyclopropane fatty acids in Salmonella enterica serovar Typhimurium. . Microbiology 151:, 209–218. [CrossRef][PubMed]
    [Google Scholar]
  76. Lacroix F. J. C., Cloeckaert A., Grépinet O., Pinault C., Popoff M. Y., Waxin H. A., Pardon P.. ( 1996;). Salmonella typhimurium acrB-like gene: identification and role in resistance to biliary salts and detergents and in murine infection. . FEMS Microbiol Lett 135:, 161–167. [CrossRef][PubMed]
    [Google Scholar]
  77. Lai C. W., Chan R. C., Cheng A. F., Sung J. Y., Leung J. W.. ( 1992;). Common bile duct stones: a cause of chronic salmonellosis. . Am J Gastroenterol 87:, 1198–1199.[PubMed]
    [Google Scholar]
  78. Langridge G. C., Phan M.-D., Turner D. J., Perkins T. T., Parts L., Haase J., Charles I., Maskell D. J., Peters S. E. et al. & other authors ( 2009;). Simultaneous assay of every Salmonella Typhi gene using one million transposon mutants. . Genome Res 19:, 2308–2316. [CrossRef][PubMed]
    [Google Scholar]
  79. Lee I. S., Lin J., Hall H. K., Bearson B., Foster J. W.. ( 1995;). The stationary-phase sigma factor σS (RpoS) is required for a sustained acid tolerance response in virulent Salmonella typhimurium. . Mol Microbiol 17:, 155–167. [CrossRef][PubMed]
    [Google Scholar]
  80. Lee A. K., Detweiler C. S., Falkow S.. ( 2000;). OmpR regulates the two-component system SsrA-ssrB in Salmonella pathogenicity island 2. . J Bacteriol 182:, 771–781. [CrossRef][PubMed]
    [Google Scholar]
  81. Lee Y. H., Kim B. H., Kim J. H., Yoon W. S., Bang S. H., Park Y. K.. ( 2007a;). CadC has a global translational effect during acid adaptation in Salmonella enterica serovar Typhimurium. . J Bacteriol 189:, 2417–2425. [CrossRef][PubMed]
    [Google Scholar]
  82. Lee H. Y., Cho S. A., Lee I. S., Park J. H., Seok S. H., Baek M. W., Kim D. J., Lee S. H., Hur S. J. et al. & other authors ( 2007b;). Evaluation of phoP and rpoS mutants of Salmonella enterica serovar Typhi as attenuated typhoid vaccine candidates: virulence and protective immune responses in intranasally immunized mice. . FEMS Immunol Med Microbiol 51:, 310–318. [CrossRef][PubMed]
    [Google Scholar]
  83. Lee Y. H., Kim J. H., Bang I. S., Park Y. K.. ( 2008;). The membrane-bound transcriptional regulator CadC is activated by proteolytic cleavage in response to acid stress. . J Bacteriol 190:, 5120–5126. [CrossRef][PubMed]
    [Google Scholar]
  84. López-Garrido J., Cheng N., García-Quintanilla F., García-del Portillo F., Casadesús J.. ( 2010;). Identification of the Salmonella enterica damX gene product, an inner membrane protein involved in bile resistance. . J Bacteriol 192:, 893–895. [CrossRef][PubMed]
    [Google Scholar]
  85. Lu S., Killoran P. B., Fang F. C., Riley L. W.. ( 2002;). The global regulator ArcA controls resistance to reactive nitrogen and oxygen intermediates in Salmonella enterica serovar Enteritidis. . Infect Immun 70:, 451–461. [CrossRef][PubMed]
    [Google Scholar]
  86. Mahan M. J., Csonka L. N.. ( 1983;). Genetic analysis of the proBA genes of Salmonella typhimurium: physical and genetic analyses of the cloned proB+ A+ genes of Escherichia coli and of a mutant allele that confers proline overproduction and enhanced osmotolerance. . J Bacteriol 156:, 1249–1262.[PubMed]
    [Google Scholar]
  87. Martin-Orozco N., Touret N., Zaharik M. L., Park E., Kopelman R., Miller S., Finlay B. B., Gros P., Grinstein S.. ( 2006;). Visualization of vacuolar acidification-induced transcription of genes of pathogens inside macrophages. . Mol Biol Cell 17:, 498–510. [CrossRef][PubMed]
    [Google Scholar]
  88. McMeechan A., Roberts M., Cogan T. A., Jørgensen F., Stevenson A., Lewis C., Rowley G., Humphrey T. J.. ( 2007;). Role of the alternative sigma factors σE and σS in survival of Salmonella enterica serovar Typhimurium during starvation, refrigeration and osmotic shock. . Microbiology 153:, 263–269. [CrossRef][PubMed]
    [Google Scholar]
  89. Menendez A., Arena E. T., Guttman J. A., Thorson L., Vallance B. A., Vogl W., Finlay B. B.. ( 2009;). Salmonella infection of gallbladder epithelial cells drives local inflammation and injury in a model of acute typhoid fever. . J Infect Dis 200:, 1703–1713. [CrossRef][PubMed]
    [Google Scholar]
  90. Merighi M., Ellermeier C. D., Slauch J. M., Gunn J. S.. ( 2005;). Resolvase-in vivo expression technology analysis of the Salmonella enterica serovar Typhimurium PhoP and PmrA regulons in BALB/c mice. . J Bacteriol 187:, 7407–7416. [CrossRef][PubMed]
    [Google Scholar]
  91. Merritt M. E., Donaldson J. R.. ( 2009;). Effect of bile salts on the DNA and membrane integrity of enteric bacteria. . J Med Microbiol 58:, 1533–1541. [CrossRef][PubMed]
    [Google Scholar]
  92. Mikkelsen L. L., Naughton P. J., Hedemann M. S., Jensen B. B.. ( 2004;). Effects of physical properties of feed on microbial ecology and survival of Salmonella enterica serovar Typhimurium in the pig gastrointestinal tract. . Appl Environ Microbiol 70:, 3485–3492. [CrossRef][PubMed]
    [Google Scholar]
  93. Miller S. I., Kukral A. M., Mekalanos J. J.. ( 1989;). A two-component regulatory system (phoP phoQ) controls Salmonella typhimurium virulence. . Proc Natl Acad Sci U S A 86:, 5054–5058. [CrossRef][PubMed]
    [Google Scholar]
  94. Miller S. T., Xavier K. B., Campagna S. R., Taga M. E., Semmelhack M. F., Bassler B. L., Hughson F. M.. ( 2004;). Salmonella typhimurium recognizes a chemically distinct form of the bacterial quorum-sensing signal AI-2. . Mol Cell 15:, 677–687. [CrossRef][PubMed]
    [Google Scholar]
  95. Morita M., Mori K., Tominaga K., Terajima J., Hirose K., Watanabe H., Izumiya H.. ( 2006;). Characterization of lysine decarboxylase-negative strains of Salmonella enterica serovar Enteritidis disseminated in Japan. . FEMS Immunol Med Microbiol 46:, 381–385. [CrossRef][PubMed]
    [Google Scholar]
  96. Nava G. M., Bielke L. R., Callaway T. R., Castañeda M. P.. ( 2005;). Probiotic alternatives to reduce gastrointestinal infections: the poultry experience. . Anim Health Res Rev 6:, 105–118. [CrossRef][PubMed]
    [Google Scholar]
  97. Nikaido H., Basina M., Nguyen V., Rosenberg E. Y.. ( 1998;). Multidrug efflux pump AcrAB of Salmonella typhimurium excretes only those beta-lactam antibiotics containing lipophilic side chains. . J Bacteriol 180:, 4686–4692.
    [Google Scholar]
  98. Nwokolo C. U., Loft D. E., Holder R., Langman M. J. S.. ( 1994;). Increased incidence of bacterial diarrhoea in patients taking gastric acid antisecretory drugs. . Eur J Gastroenterol Hepatol 6:, 697–700. [CrossRef]
    [Google Scholar]
  99. Park Y. K., Bearson B., Bang S. H., Bang I. S., Foster J. W.. ( 1996;). Internal pH crisis, lysine decarboxylase and the acid tolerance response of Salmonella typhimurium. . Mol Microbiol 20:, 605–611. [CrossRef][PubMed]
    [Google Scholar]
  100. Perrenoud A., Sauer U.. ( 2005;). Impact of global transcriptional regulation by ArcA, ArcB, Cra, Crp, Cya, Fnr, and Mlc on glucose catabolism in Escherichia coli. . J Bacteriol 187:, 3171–3179. [CrossRef][PubMed]
    [Google Scholar]
  101. Prieto A. I., Ramos-Morales F., Casadesús J.. ( 2004;). Bile-induced DNA damage in Salmonella enterica. . Genetics 168:, 1787–1794. [CrossRef][PubMed]
    [Google Scholar]
  102. Prieto A. I., Ramos-Morales F., Casadesús J.. ( 2006;). Repair of DNA damage induced by bile salts in Salmonella enterica. . Genetics 174:, 575–584. [CrossRef][PubMed]
    [Google Scholar]
  103. Prieto A. I., Jakomin M., Segura I., Pucciarelli M. G., Ramos-Morales F., García-Del Portillo F., Casadesús J.. ( 2007;). The GATC-binding protein SeqA is required for bile resistance and virulence in Salmonella enterica serovar Typhimurium. . J Bacteriol 189:, 8496–8502. [CrossRef][PubMed]
    [Google Scholar]
  104. Prost L. R., Daley M. E., Le Sage V., Bader M. W., Le Moual H., Klevit R. E., Miller S. I.. ( 2007;). Activation of the bacterial sensor kinase PhoQ by acidic pH. . Mol Cell 26:, 165–174. [CrossRef][PubMed]
    [Google Scholar]
  105. Prouty A. M., Gunn J. S.. ( 2000;). Salmonella enterica serovar Typhimurium invasion is repressed in the presence of bile. . Infect Immun 68:, 6763–6769. [CrossRef][PubMed]
    [Google Scholar]
  106. Prouty A. M., Van Velkinburgh J. C., Gunn J. S.. ( 2002a;). Salmonella enterica serovar Typhimurium resistance to bile: identification and characterization of the tolQRA cluster. . J Bacteriol 184:, 1270–1276. [CrossRef][PubMed]
    [Google Scholar]
  107. Prouty A. M., Schwesinger W. H., Gunn J. S.. ( 2002b;). Biofilm formation and interaction with the surfaces of gallstones by Salmonella spp. . Infect Immun 70:, 2640–2649. [CrossRef][PubMed]
    [Google Scholar]
  108. Prouty A. M., Brodsky I. E., Manos J., Belas R., Falkow S., Gunn J. S.. ( 2004a;). Transcriptional regulation of Salmonella enterica serovar Typhimurium genes by bile. . FEMS Immunol Med Microbiol 41:, 177–185. [CrossRef][PubMed]
    [Google Scholar]
  109. Prouty A. M., Brodsky I. E., Falkow S., Gunn J. S.. ( 2004b;). Bile-salt-mediated induction of antimicrobial and bile resistance in Salmonella typhimurium. . Microbiology 150:, 775–783. [CrossRef][PubMed]
    [Google Scholar]
  110. Ramos-Morales F., Prieto A. I., Beuzón C. R., Holden D. W., Casadesús J.. ( 2003;). Role for Salmonella enterica enterobacterial common antigen in bile resistance and virulence. . J Bacteriol 185:, 5328–5332. [CrossRef][PubMed]
    [Google Scholar]
  111. Rollenhagen C., Bumann D.. ( 2006;). Salmonella enterica highly expressed genes are disease specific. . Infect Immun 74:, 1649–1660. [CrossRef][PubMed]
    [Google Scholar]
  112. Rychlik I., Barrow P. A.. ( 2005;). Salmonella stress management and its relevance to behaviour during intestinal colonisation and infection. . FEMS Microbiol Rev 29:, 1021–1040. [CrossRef][PubMed]
    [Google Scholar]
  113. Salzman N. H., Ghosh D., Huttner K. M., Paterson Y., Bevins C. L.. ( 2003;). Protection against enteric salmonellosis in transgenic mice expressing a human intestinal defensin. . Nature 422:, 522–526. [CrossRef][PubMed]
    [Google Scholar]
  114. Sevcík M., Sebková A., Volf J., Rychlík I.. ( 2001;). Transcription of arcA and rpoS during growth of Salmonella typhimurium under aerobic and microaerobic conditions. . Microbiology 147:, 701–708.[PubMed]
    [Google Scholar]
  115. Shin D., Groisman E. A.. ( 2005;). Signal-dependent binding of the response regulators PhoP and PmrA to their target promoters in vivo. . J Biol Chem 280:, 4089–4094. [CrossRef][PubMed]
    [Google Scholar]
  116. Sleator R. D., Hill C.. ( 2002;). Bacterial osmoadaptation: the role of osmolytes in bacterial stress and virulence. . FEMS Microbiol Rev 26:, 49–71. [CrossRef][PubMed]
    [Google Scholar]
  117. Smith J. L.. ( 2003;). The role of gastric acid in preventing foodborne disease and how bacteria overcome acid conditions. . J Food Prot 66:, 1292–1303.[PubMed]
    [Google Scholar]
  118. Smith J. N., Dyszel J. L., Soares J. A., Ellermeier C. D., Altier C., Lawhon S. D., Adams L. G., Konjufca V., Curtiss R. III et al. & other authors ( 2008;). SdiA, an N-acylhomoserine lactone receptor, becomes active during the transit of Salmonella enterica through the gastrointestinal tract of turtles. . PLoS ONE 3:, e2826. [CrossRef][PubMed]
    [Google Scholar]
  119. Spector M. P.. ( 1998;). The starvation-stress response (SSR) of Salmonella. . Adv Microb Physiol 40:, 233–279. [CrossRef][PubMed]
    [Google Scholar]
  120. Su J., Gong H., Lai J. T., Main A. J., Lu S.. ( 2009;). The potassium transporter Trk and external potassium modulate Salmonella enterica protein secretion and virulence. . Infect Immun 77:, 667–675. [CrossRef][PubMed]
    [Google Scholar]
  121. Tennant S. M., Hartland E. L., Phumoonna T., Lyras D., Rood J. I., Robins-Browne R. M., van Driel I. R.. ( 2008;). Influence of gastric acid on susceptibility to infection with ingested bacterial pathogens. . Infect Immun 76:, 639–645. [CrossRef][PubMed]
    [Google Scholar]
  122. Tu X., Latifi T., Bougdour A., Gottesman S., Groisman E. A.. ( 2006;). The PhoP/PhoQ two-component system stabilizes the alternative sigma factor RpoS in Salmonella enterica. . Proc Natl Acad Sci U S A 103:, 13503–13508. [CrossRef][PubMed]
    [Google Scholar]
  123. Unden G., Becker S., Bongaerts J., Holighaus G., Schirawski J., Six S.. ( 1995;). O2-sensing and O2-dependent gene regulation in facultatively anaerobic bacteria. . Arch Microbiol 164:, 81–90.[PubMed]
    [Google Scholar]
  124. van Velkinburgh J. C., Gunn J. S.. ( 1999;). PhoP-PhoQ-regulated loci are required for enhanced bile resistance in Salmonella spp. . Infect Immun 67:, 1614–1622.[PubMed]
    [Google Scholar]
  125. Walters M., Sperandio V.. ( 2006;). Quorum sensing in Escherichia coli and Salmonella. . Int J Med Microbiol 296:, 125–131. [CrossRef][PubMed]
    [Google Scholar]
  126. Waterman S. R., Small P. L. C.. ( 1998;). Acid-sensitive enteric pathogens are protected from killing under extremely acidic conditions of pH 2.5 when they are inoculated onto certain solid food sources. . Appl Environ Microbiol 64:, 3882–3886.[PubMed]
    [Google Scholar]
  127. Weber K. D., Vincent O. D., Kiley P. J.. ( 2005;). Additional determinants within Escherichia coli FNR activating region 1 and RNA polymerase α subunit required for transcription activation. . J Bacteriol 187:, 1724–1731. [CrossRef][PubMed]
    [Google Scholar]
  128. Wei Y., Miller C. G.. ( 1999;). Characterization of a group of anaerobically induced, fnr-dependent genes of Salmonella typhimurium. . J Bacteriol 181:, 6092–6097.[PubMed]
    [Google Scholar]
  129. Wilmes-Riesenberg M. R., Bearson B., Foster J. W., Curtis R. III. ( 1996;). Role of the acid tolerance response in virulence of Salmonella typhimurium. . Infect Immun 64:, 1085–1092.[PubMed]
    [Google Scholar]
  130. Zbell A. L., Benoit S. L., Maier R. J.. ( 2007;). Differential expression of NiFe uptake-type hydrogenase genes in Salmonella enterica serovar Typhimurium. . Microbiology 153:, 3508–3516. [CrossRef][PubMed]
    [Google Scholar]
  131. Zhao B., Houry W. A.. ( 2010;). Acid stress response in enteropathogenic gammaproteobacteria: an aptitude for survival. . Biochem Cell Biol 88:, 301–314. [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.050351-0
Loading
/content/journal/micro/10.1099/mic.0.050351-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error