1887

Abstract

is the most common bacterial cause of foodborne disease in the developed world. Its general physiology and biochemistry, as well as the mechanisms enabling it to colonize and cause disease in various hosts, are not well understood, and new approaches are required to understand its basic biology. High-throughput sequencing technologies provide unprecedented opportunities for functional genomic research. Recent studies have shown that direct Illumina sequencing of cDNA (RNA-seq) is a useful technique for the quantitative and qualitative examination of transcriptomes. In this study we report RNA-seq analyses of the transcriptomes of (NCTC11168) and its mutant. This has allowed the identification of hitherto unknown transcriptional units, and further defines the regulon that is dependent on for expression. The analysis of the NCTC11168 transcriptome was supplemented by additional proteomic analysis using liquid chromatography-MS. The transcriptomic and proteomic datasets represent an important resource for the research community.

Funding
This study was supported by the:
  • Department for Environment, Food and Rural Affairs (Defra)
  • Defra/Higher Education Funding Council of England
  • Veterinary Training and Research Initiative (Award VT0105)
  • Medical Research Council (Award G0801161)
  • Wellcome Trust
  • Wellcome Trust (Award 079643/Z/06/Z)
  • This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.050278-0
2011-10-01
2021-10-27
Loading full text...

Full text loading...

/deliver/fulltext/micro/157/10/2922.html?itemId=/content/journal/micro/10.1099/mic.0.050278-0&mimeType=html&fmt=ahah

References

  1. Altschul S. F., Gish W., Miller W., Myers E. W., Lipman D. J. ( 1990). Basic local alignment search tool. J Mol Biol 215:403–410[PubMed] [CrossRef]
    [Google Scholar]
  2. Anders S., Huber W. ( 2010). Differential expression analysis for sequence count data. Genome Biol 11:R106 [View Article][PubMed]
    [Google Scholar]
  3. Benjamini Y., Hochberg Y. ( 1995). Controlling the false discovery rate – a practical and powerful approach to multiple testing. J R Stat Soc B 57:289–300
    [Google Scholar]
  4. Brosch M., Yu L., Hubbard T., Choudhary J. ( 2009). Accurate and sensitive peptide identification with Mascot Percolator. J Proteome Res 8:3176–3181 [View Article][PubMed]
    [Google Scholar]
  5. Carrillo C. D., Taboada E., Nash J. H., Lanthier P., Kelly J., Lau P. C., Verhulp R., Mykytczuk O., Sy J. et al. & other authors ( 2004). Genome-wide expression analyses of Campylobacter jejuni NCTC11168 reveals coordinate regulation of motility and virulence by flhA. J Biol Chem 279:20327–20338 [View Article][PubMed]
    [Google Scholar]
  6. Carver T., Böhme U., Otto T. D., Parkhill J., Berriman M. ( 2010). BamView: viewing mapped read alignment data in the context of the reference sequence. Bioinformatics 26:676–677 [View Article][PubMed]
    [Google Scholar]
  7. Christensen J. E., Pacheco S. A., Konkel M. E. ( 2009). Identification of a Campylobacter jejuni-secreted protein required for maximal invasion of host cells. Mol Microbiol 73:650–662 [View Article][PubMed]
    [Google Scholar]
  8. Cloonan N., Forrest A. R., Kolle G., Gardiner B. B., Faulkner G. J., Brown M. K., Taylor D. F., Steptoe A. L., Wani S. et al. & other authors ( 2008). Stem cell transcriptome profiling via massive-scale mRNA sequencing. Nat Methods 5:613–619 [View Article][PubMed]
    [Google Scholar]
  9. Corry J. E., Atabay H. I. ( 2001). Poultry as a source of Campylobacter and related organisms, Symposium series96S–114S Society for Applied Microbiology;
    [Google Scholar]
  10. Dower W. J., Miller J. F., Ragsdale C. W. ( 1988). High efficiency transformation of E. coli by high voltage electroporation. Nucleic Acids Res 16:6127–6145 [View Article][PubMed]
    [Google Scholar]
  11. Eddy S. R., Durbin R. ( 1994). RNA sequence analysis using covariance models. Nucleic Acids Res 22:2079–2088 [View Article][PubMed]
    [Google Scholar]
  12. Fuglsang A. ( 2003). The genome of Campylobacter jejuni: codon and amino acid usage. APMIS 111:605–618 [View Article][PubMed]
    [Google Scholar]
  13. Gardner P. P., Daub J., Tate J. G., Nawrocki E. P., Kolbe D. L., Lindgreen S., Wilkinson A. C., Finn R. D., Griffiths-Jones S. et al. & other authors ( 2009). Rfam: updates to the RNA families database. Nucleic Acids Res 37:Database issueD136–D140 [View Article][PubMed]
    [Google Scholar]
  14. Goodyear C. S., O’Hanlon G. M., Plomp J. J., Wagner E. R., Morrison I., Veitch J., Cochrane L., Bullens R. W., Molenaar P. C. et al. & other authors ( 1999). Monoclonal antibodies raised against Guillain–Barré syndrome-associated Campylobacter jejuni lipopolysaccharides react with neuronal gangliosides and paralyze muscle-nerve preparations. J Clin Invest 104:697–708 [View Article][PubMed]
    [Google Scholar]
  15. Gundogdu O., Bentley S. D., Holden M. T., Parkhill J., Dorrell N., Wren B. W. ( 2007). Re-annotation and re-analysis of the Campylobacter jejuni NCTC11168 genome sequence. BMC Genomics 8:162 [View Article][PubMed]
    [Google Scholar]
  16. Hendrixson D. R., DiRita V. J. ( 2003). Transcription of sigma54-dependent but not σ28-dependent flagellar genes in Campylobacter jejuni is associated with formation of the flagellar secretory apparatus. Mol Microbiol 50:687–702 [View Article][PubMed]
    [Google Scholar]
  17. Hendrixson D. R., Akerley B. J., DiRita V. J. ( 2001). Transposon mutagenesis of Campylobacter jejuni identifies a bipartite energy taxis system required for motility. Mol Microbiol 40:214–224 [View Article][PubMed]
    [Google Scholar]
  18. Herman L., Heyndrickx M., Grijspeerdt K., Vandekerchove D., Rollier I., De Zutter L. ( 2003). Routes for Campylobacter contamination of poultry meat: epidemiological study from hatchery to slaughterhouse. Epidemiol Infect 131:1169–1180 [View Article][PubMed]
    [Google Scholar]
  19. Humphrey T., O’Brien S., Madsen M. ( 2007). Campylobacters as zoonotic pathogens: a food production perspective. Int J Food Microbiol 117:237–257 [View Article][PubMed]
    [Google Scholar]
  20. Jagannathan A., Constantinidou C., Penn C. W. ( 2001). Roles of rpoN, fliA, and flgR in expression of flagella in Campylobacter jejuni . J Bacteriol 183:2937–2942 [View Article][PubMed]
    [Google Scholar]
  21. Kamal N., Dorrell N., Jagannathan A., Turner S. M., Constantinidou C., Studholme D. J., Marsden G., Hinds J., Laing K. G. et al. & other authors ( 2007). Deletion of a previously uncharacterized flagellar-hook-length control gene fliK modulates the σ54-dependent regulon in Campylobacter jejuni . Microbiology 153:3099–3111 [View Article][PubMed]
    [Google Scholar]
  22. Lam W. W., Woo E. J., Kotaka M., Tam W. K., Leung Y. C., Ling T. K., Au S. W. ( 2010). Molecular interaction of flagellar export chaperone FliS and cochaperone HP1076 in Helicobacter pylori . FASEB J 24:4020–4032 [View Article][PubMed]
    [Google Scholar]
  23. Marioni J. C., Mason C. E., Mane S. M., Stephens M., Gilad Y. ( 2008). RNA-seq: an assessment of technical reproducibility and comparison with gene expression arrays. Genome Res 18:1509–1517 [View Article][PubMed]
    [Google Scholar]
  24. Mortazavi A., Williams B. A., McCue K., Schaeffer L., Wold B. ( 2008). Mapping and quantifying mammalian transcriptomes by RNA-Seq. Nat Methods 5:621–628 [View Article][PubMed]
    [Google Scholar]
  25. Nagalakshmi U., Wang Z., Waern K., Shou C., Raha D., Gerstein M., Snyder M. ( 2008). The transcriptional landscape of the yeast genome defined by RNA sequencing. Science 320:1344–1349 [View Article][PubMed]
    [Google Scholar]
  26. Parkhill J., Wren B. W., Mungall K., Ketley J. M., Churcher C., Basham D., Chillingworth T., Davies R. M., Feltwell T. et al. & other authors ( 2000). The genome sequence of the food-borne pathogen Campylobacter jejuni reveals hypervariable sequences. Nature 403:665–668 [View Article][PubMed]
    [Google Scholar]
  27. Perkins T. T., Kingsley R. A., Fookes M. C., Gardner P. P., James K. D., Yu L., Assefa S. A., He M., Croucher N. J. et al. & other authors ( 2009). A strand-specific RNA-Seq analysis of the transcriptome of the typhoid bacillus Salmonella typhi . PLoS Genet 5:e1000569 [View Article][PubMed]
    [Google Scholar]
  28. Petersen L., Larsen T. S., Ussery D. W., On S. L., Krogh A. ( 2003). RpoD promoters in Campylobacter jejuni exhibit a strong periodic signal instead of a -35 box. J Mol Biol 326:1361–1372 [View Article][PubMed]
    [Google Scholar]
  29. Pickard D., Toribio A. L., Petty N. K., van Tonder A., Yu L., Goulding D., Barrell B., Rance R., Harris D. et al. & other authors ( 2010). A conserved acetyl esterase domain targets diverse bacteriophages to the Vi capsular receptor of Salmonella enterica serovar Typhi. J Bacteriol 192:5746–5754 [View Article][PubMed]
    [Google Scholar]
  30. Polyakov A., Severinova E., Darst S. A. ( 1995). Three-dimensional structure of E. coli core RNA polymerase: promoter binding and elongation conformations of the enzyme. Cell 83:365–373 [View Article][PubMed]
    [Google Scholar]
  31. Rutherford K., Parkhill J., Crook J., Horsnell T., Rice P., Rajandream M. A., Barrell B. ( 2000). Artemis: sequence visualization and annotation. Bioinformatics 16:944–945 [View Article][PubMed]
    [Google Scholar]
  32. Sambrook J., Russell D. W. ( 2001). Molecular Cloning: a Laboratory Manual, 3rd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  33. Sharp P. M., Emery L. R., Zeng K. ( 2010). Forces that influence the evolution of codon bias. Philos Trans R Soc Lond B Biol Sci 365:1203–1212 [View Article][PubMed]
    [Google Scholar]
  34. Silverman M., Simon M. ( 1973). Genetic analysis of flagellar mutants in Escherichia coli. J Bacteriol 113:105–113[PubMed]
    [Google Scholar]
  35. Smyth G. K. ( 2004). Linear models and empirical bayes methods for assessing differential expression in microarray experiments. Stat Appl Genet Mol Biol 3:Article 3
    [Google Scholar]
  36. Smyth G. K. ( 2005). Limma: linear models for microarray data. Bioinformatics and Computational Biology Solutions using R and Bioconductor397–420 Gentleman R., Carey V., Dudoit S., Irizarry R., Huber S. New York: Springer; [View Article]
    [Google Scholar]
  37. Smyth G. K., Speed T. ( 2003). Normalization of cDNA microarray data. Methods 31:265–273 [View Article][PubMed]
    [Google Scholar]
  38. Smyth G. K., Michaud J., Scott H. S. ( 2005). Use of within-array replicate spots for assessing differential expression in microarray experiments. Bioinformatics 21:2067–2075 [View Article][PubMed]
    [Google Scholar]
  39. Thompson J. D., Higgins D. G., Gibson T. J. ( 1994). CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680 [View Article][PubMed]
    [Google Scholar]
  40. Torarinsson E., Lindgreen S. ( 2008). WAR: Webserver for aligning structural RNAs. Nucleic Acids Res 36:Web Server issueW79–84 [View Article][PubMed]
    [Google Scholar]
  41. Van Vliet A. H. M., Wood A. C., Henderson J., Wooldridge K., Ketley J. M. ( 1998). Genetic manipulation of enteric Campylobacter species. Methods in Microbiology 27:407–419 [View Article]
    [Google Scholar]
  42. Wang Z., Gerstein M., Snyder M. ( 2009). RNA-Seq: a revolutionary tool for transcriptomics. Nat Rev Genet 10:57–63 [View Article][PubMed]
    [Google Scholar]
  43. Washietl S., Hofacker I. L. ( 2004). Consensus folding of aligned sequences as a new measure for the detection of functional RNAs by comparative genomics. J Mol Biol 342:19–30 [View Article][PubMed]
    [Google Scholar]
  44. Washietl S., Hofacker I. L., Stadler P. F. ( 2005). Fast and reliable prediction of noncoding RNAs. Proc Natl Acad Sci U S A 102:2454–2459 [View Article][PubMed]
    [Google Scholar]
  45. Wassenaar T. M., Bleumink-Pluym N. M., Newell D. G., Nuijten P. J., van der Zeijst B. A. ( 1994). Differential flagellin expression in a flaA flaB + mutant of Campylobacter jejuni . Infect Immun 62:3901–3906[PubMed]
    [Google Scholar]
  46. Wilhelm B. T., Marguerat S., Watt S., Schubert F., Wood V., Goodhead I., Penkett C. J., Rogers J., Bähler J. ( 2008). Dynamic repertoire of a eukaryotic transcriptome surveyed at single-nucleotide resolution. Nature 453:1239–1243 [View Article][PubMed]
    [Google Scholar]
  47. Wösten M. M., Wagenaar J. A., van Putten J. P. ( 2004). The FlgS/FlgR two-component signal transduction system regulates the fla regulon in Campylobacter jejuni . J Biol Chem 279:16214–16222 [View Article][PubMed]
    [Google Scholar]
  48. Yoder-Himes D. R., Chain P. S., Zhu Y., Wurtzel O., Rubin E. M., Tiedje J. M., Sorek R. ( 2009). Mapping the Burkholderia cenocepacia niche response via high-throughput sequencing. Proc Natl Acad Sci U S A 106:3976–3981 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.050278-0
Loading
/content/journal/micro/10.1099/mic.0.050278-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error