1887

Abstract

Regulators of membrane fusion play an important role in phagocytosis, as they regulate the focal delivery of endomembrane that is required for optimal internalization of large particles. During internalization of promastigotes, the surface glycolipid lipophosphoglycan (LPG) is transferred to the macrophage membrane and modifies its fusogenic properties. In this study, we investigated the impact of LPG on the recruitment of the exocytosis regulator synaptotagmin V (Syt V) at the area of internalization and on the early steps of phagocytosis. Using LPG-defective mutants and LPG-coated particles, we established that LPG reduces the phagocytic capacity of macrophages and showed that it causes exclusion of Syt V from the nascent phagosome. Silencing of Syt V inhibited phagocytosis to the same extent as LPG, and these effects were not cumulative, consistent with a Syt V-dependent mechanism for the inhibition of phagocytosis by LPG. Previous work has revealed that LPG-mediated exclusion of Syt V from phagosomes prevents the recruitment of the vacuolar ATPase and acidification. Thus, whereas exclusion of Syt V from phagosomes in the process of formation may be beneficial for the creation of a hospitable intracellular niche, it reduces the phagocytic capacity of macrophages. We propose that the cost associated with a reduced internalization rate may be compensated by increased survival, and could lead to a greater overall parasite fitness.

Funding
This study was supported by the:
  • Canadian Institutes of Health Research (Award MOP-12933)
  • Fonds de la recherche en santé du Québec
  • Fondation Armand-Frappier
  • Fonds Québécois de la Recherche sur la Nature et les Technologies
Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.050252-0
2011-09-01
2024-04-20
Loading full text...

Full text loading...

/deliver/fulltext/micro/157/9/2619.html?itemId=/content/journal/micro/10.1099/mic.0.050252-0&mimeType=html&fmt=ahah

References

  1. Akilov O. E., Kasuboski R. E., Carter C. R., McDowell M. A. ( 2007). The role of mannose receptor during experimental leishmaniasis. J Leukoc Biol 81:1188–1196 [View Article][PubMed]
    [Google Scholar]
  2. Alexander J., Russell D. G. ( 1992). The interaction of Leishmania species with macrophages. Adv Parasitol 31:175–254 [View Article][PubMed]
    [Google Scholar]
  3. Arellano-Reynoso B., Lapaque N., Salcedo S., Briones G., Ciocchini A. E., Ugalde R., Moreno E., Moriyón I., Gorvel J. P. ( 2005). Cyclic beta-1,2-glucan is a Brucella virulence factor required for intracellular survival. Nat Immunol 6:618–625 [View Article][PubMed]
    [Google Scholar]
  4. Bajno L., Peng X. R., Schreiber A. D., Moore H. P., Trimble W. S., Grinstein S. ( 2000). Focal exocytosis of VAMP3-containing vesicles at sites of phagosome formation. J Cell Biol 149:697–706 [View Article][PubMed]
    [Google Scholar]
  5. Booth J. W., Trimble W. S., Grinstein S. ( 2001). Membrane dynamics in phagocytosis. Semin Immunol 13:357–364 [View Article][PubMed]
    [Google Scholar]
  6. Braun V., Niedergang F. ( 2006). Linking exocytosis and endocytosis during phagocytosis. Biol Cell 98:195–201 [View Article][PubMed]
    [Google Scholar]
  7. Brittingham A., Morrison C. J., McMaster W. R., McGwire B. S., Chang K. P., Mosser D. M. ( 1995). Role of the Leishmania surface protease gp63 in complement fixation, cell adhesion, and resistance to complement-mediated lysis. J Immunol 155:3102–3111[PubMed]
    [Google Scholar]
  8. Chapman E. R. ( 2008). How does synaptotagmin trigger neurotransmitter release?. Annu Rev Biochem 77:615–641 [View Article][PubMed]
    [Google Scholar]
  9. Collins R. F., Schreiber A. D., Grinstein S., Trimble W. S. ( 2002). Syntaxins 13 and 7 function at distinct steps during phagocytosis. J Immunol 169:3250–3256[PubMed] [CrossRef]
    [Google Scholar]
  10. Colmenares M., Corbí A. L., Turco S. J., Rivas L. ( 2004). The dendritic cell receptor DC-SIGN discriminates among species and life cycle forms of Leishmania . J Immunol 172:1186–1190[PubMed] [CrossRef]
    [Google Scholar]
  11. Cox D., Lee D. J., Dale B. M., Calafat J., Greenberg S. ( 2000). A Rab11-containing rapidly recycling compartment in macrophages that promotes phagocytosis. Proc Natl Acad Sci U S A 97:680–685 [View Article][PubMed]
    [Google Scholar]
  12. Czibener C., Sherer N. M., Becker S. M., Pypaert M., Hui E., Chapman E. R., Mothes W., Andrews N. W. ( 2006). Ca2+ and synaptotagmin VII-dependent delivery of lysosomal membrane to nascent phagosomes. J Cell Biol 174:997–1007 [View Article][PubMed]
    [Google Scholar]
  13. Dermine J. F., Duclos S., Garin J., St-Louis F., Rea S., Parton R. G., Desjardins M. ( 2001). Flotillin-1-enriched lipid raft domains accumulate on maturing phagosomes. J Biol Chem 276:18507–18512 [View Article][PubMed]
    [Google Scholar]
  14. Dermine J. F., Goyette G., Houde M., Turco S. J., Desjardins M. ( 2005). Leishmania donovani lipophosphoglycan disrupts phagosome microdomains in J774 macrophages. Cell Microbiol 7:1263–1270 [View Article][PubMed]
    [Google Scholar]
  15. Descoteaux A., Matlashewski G. ( 1989). c-fos and tumor necrosis factor gene expression in Leishmania donovani-infected macrophages. Mol Cell Biol 9:5223–5227[PubMed]
    [Google Scholar]
  16. Descoteaux A., Turco S. J. ( 1999). Glycoconjugates in Leishmania infectivity. Biochim Biophys Acta 1455:341–352[PubMed] [CrossRef]
    [Google Scholar]
  17. Descoteaux A., Matlashewski G., Turco S. J. ( 1992). Inhibition of macrophage protein kinase C-mediated protein phosphorylation by Leishmania donovani lipophosphoglycan. J Immunol 149:3008–3015[PubMed]
    [Google Scholar]
  18. Descoteaux A., Luo Y., Turco S. J., Beverley S. M. ( 1995). A specialized pathway affecting virulence glycoconjugates of Leishmania . Science 269:1869–1872 [View Article][PubMed]
    [Google Scholar]
  19. Desjardins M. ( 2003). ER-mediated phagocytosis: a new membrane for new functions. Nat Rev Immunol 3:280–291 [View Article][PubMed]
    [Google Scholar]
  20. Flandin J. F., Chano F., Descoteaux A. ( 2006). RNA interference reveals a role for TLR2 and TLR3 in the recognition of Leishmania donovani promastigotes by interferon-gamma-primed macrophages. Eur J Immunol 36:411–420 [View Article][PubMed]
    [Google Scholar]
  21. Fratti R. A., Chua J., Deretic V. ( 2002). Cellubrevin alterations and Mycobacterium tuberculosis phagosome maturation arrest. J Biol Chem 277:17320–17326 [View Article][PubMed]
    [Google Scholar]
  22. Galli T., McPherson P. S., De Camilli P. ( 1996). The V0 sector of the V-ATPase, synaptobrevin, and synaptophysin are associated on synaptic vesicles in a Triton X-100-resistant, freeze-thawing sensitive, complex. J Biol Chem 271:2193–2198 [View Article][PubMed]
    [Google Scholar]
  23. Gatfield J., Pieters J. ( 2000). Essential role for cholesterol in entry of mycobacteria into macrophages. Science 288:1647–1651 [View Article][PubMed]
    [Google Scholar]
  24. Gomes I. N., Palma L. C., Campos G. O., Lima J. G., DE Almeida T. F., DE Menezes J. P., Ferreira C. A., Santos R. R., Buck G. A. et al. ( 2009). The scavenger receptor MARCO is involved in Leishmania major infection by CBA/J macrophages. Parasite Immunol 31:188–198 [View Article][PubMed]
    [Google Scholar]
  25. Grassmé H., Jendrossek V., Riehle A., von Kürthy G., Berger J., Schwarz H., Weller M., Kolesnick R., Gulbins E. ( 2003). Host defense against Pseudomonas aeruginosa requires ceramide-rich membrane rafts. Nat Med 9:322–330 [View Article][PubMed]
    [Google Scholar]
  26. Hackam D. J., Rotstein O. D., Sjolin C., Schreiber A. D., Trimble W. S., Grinstein S. ( 1998). v-SNARE-dependent secretion is required for phagocytosis. Proc Natl Acad Sci U S A 95:11691–11696 [View Article][PubMed]
    [Google Scholar]
  27. Handman E., Goding J. W. ( 1985). The Leishmania receptor for macrophages is a lipid-containing glycoconjugate. EMBO J 4:329–336[PubMed]
    [Google Scholar]
  28. Hatsuzawa K., Tamura T., Hashimoto H., Hashimoto H., Yokoya S., Miura M., Nagaya H., Wada I. ( 2006). Involvement of syntaxin 18, an endoplasmic reticulum (ER)-localized SNARE protein, in ER-mediated phagocytosis. Mol Biol Cell 17:3964–3977 [View Article][PubMed]
    [Google Scholar]
  29. Holm A., Tejle K., Gunnarsson T., Magnusson K. E., Descoteaux A., Rasmusson B. ( 2003). Role of protein kinase C α for uptake of unopsonized prey and phagosomal maturation in macrophages. Biochem Biophys Res Commun 302:653–658 [View Article][PubMed]
    [Google Scholar]
  30. Huang C., Turco S. J. ( 1993). Defective galactofuranose addition in lipophosphoglycan biosynthesis in a mutant of Leishmania donovani . J Biol Chem 268:24060–24066[PubMed]
    [Google Scholar]
  31. Huynh K. K., Kay J. G., Stow J. L., Grinstein S. ( 2007). Fusion, fission, and secretion during phagocytosis. Physiology (Bethesda) 22:366–372[PubMed] [CrossRef]
    [Google Scholar]
  32. Iezzi M., Eliasson L., Fukuda M., Wollheim C. B. ( 2005). Adenovirus-mediated silencing of synaptotagmin 9 inhibits Ca2+-dependent insulin secretion in islets. FEBS Lett 579:5241–5246 [View Article][PubMed]
    [Google Scholar]
  33. Jahn R., Lang T., Südhof T. C. ( 2003). Membrane fusion. Cell 112:519–533 [View Article][PubMed]
    [Google Scholar]
  34. Kay J. G., Murray R. Z., Pagan J. K., Stow J. L. ( 2006). Cytokine secretion via cholesterol-rich lipid raft-associated SNAREs at the phagocytic cup. J Biol Chem 281:11949–11954 [View Article][PubMed]
    [Google Scholar]
  35. Lafont F., van der Goot F. G. ( 2005). Bacterial invasion via lipid rafts. Cell Microbiol 7:613–620 [View Article][PubMed]
    [Google Scholar]
  36. Lafourcade C., Sobo K., Kieffer-Jaquinod S., Garin J., van der Goot F. G. ( 2008). Regulation of the V-ATPase along the endocytic pathway occurs through reversible subunit association and membrane localization. PLoS ONE 3:e2758 [View Article][PubMed]
    [Google Scholar]
  37. Lang T. ( 2007). SNARE proteins and ‘membrane rafts’. J Physiol 585:693–698 [View Article][PubMed]
    [Google Scholar]
  38. Lodge R., Descoteaux A. ( 2005). Leishmania donovani promastigotes induce periphagosomal F-actin accumulation through retention of the GTPase Cdc42. Cell Microbiol 7:1647–1658 [View Article][PubMed]
    [Google Scholar]
  39. Lodge R., Diallo T. O., Descoteaux A. ( 2006). Leishmania donovani lipophosphoglycan blocks NADPH oxidase assembly at the phagosome membrane. Cell Microbiol 8:1922–1931 [View Article][PubMed]
    [Google Scholar]
  40. Martinez I., Chakrabarti S., Hellevik T., Morehead J., Fowler K., Andrews N. W. ( 2000). Synaptotagmin VII regulates Ca2+-dependent exocytosis of lysosomes in fibroblasts. J Cell Biol 148:1141–1150 [View Article][PubMed]
    [Google Scholar]
  41. McNeely T. B., Turco S. J. ( 1990). Requirement of lipophosphoglycan for intracellular survival of Leishmania donovani within human monocytes. J Immunol 144:2745–2750[PubMed]
    [Google Scholar]
  42. Mosser D. M. ( 1994). Receptors on phagocytic cells involved in microbial recognition. Immunol Ser 60:99–114[PubMed]
    [Google Scholar]
  43. Murray R. Z., Kay J. G., Sangermani D. G., Stow J. L. ( 2005). A role for the phagosome in cytokine secretion. Science 310:1492–1495 [View Article][PubMed]
    [Google Scholar]
  44. Niedergang F., Colucci-Guyon E., Dubois T., Raposo G., Chavrier P. ( 2003). ADP ribosylation factor 6 is activated and controls membrane delivery during phagocytosis in macrophages. J Cell Biol 161:1143–1150 [View Article][PubMed]
    [Google Scholar]
  45. Orlandi P. A., Fishman P. H. ( 1998). Filipin-dependent inhibition of cholera toxin: evidence for toxin internalization and activation through caveolae-like domains. J Cell Biol 141:905–915 [View Article][PubMed]
    [Google Scholar]
  46. Orlandi P. A. Jr, Turco S. J. ( 1987). Structure of the lipid moiety of the Leishmania donovani lipophosphoglycan. J Biol Chem 262:10384–10391[PubMed]
    [Google Scholar]
  47. Peyron P., Bordier C., N’Diaye E. N., Maridonneau-Parini I. ( 2000). Nonopsonic phagocytosis of Mycobacterium kansasii by human neutrophils depends on cholesterol and is mediated by CR3 associated with glycosylphosphatidylinositol-anchored proteins. J Immunol 165:5186–5191[PubMed] [CrossRef]
    [Google Scholar]
  48. Privé C., Descoteaux A. ( 2000). Leishmania donovani promastigotes evade the activation of mitogen-activated protein kinases p38, c-Jun N-terminal kinase, and extracellular signal-regulated kinase-1/2 during infection of naive macrophages. Eur J Immunol 30:2235–2244 [View Article][PubMed]
    [Google Scholar]
  49. Pucadyil T. J., Tewary P., Madhubala R., Chattopadhyay A. ( 2004). Cholesterol is required for Leishmania donovani infection: implications in leishmaniasis. Mol Biochem Parasitol 133:145–152 [View Article][PubMed]
    [Google Scholar]
  50. Rodríguez N. E., Gaur U., Wilson M. E. ( 2006). Role of caveolae in Leishmania chagasi phagocytosis and intracellular survival in macrophages. Cell Microbiol 8:1106–1120 [View Article][PubMed]
    [Google Scholar]
  51. Russell D. G. ( 1987). The macrophage-attachment glycoprotein gp63 is the predominant C3-acceptor site on Leishmania mexicana promastigotes. Eur J Biochem 164:213–221 [View Article][PubMed]
    [Google Scholar]
  52. Russo D. M., Turco S. J., Burns J. M. Jr, Reed S. G. ( 1992). Stimulation of human T lymphocytes by Leishmania lipophosphoglycan-associated proteins. J Immunol 148:202–207[PubMed]
    [Google Scholar]
  53. Saegusa C., Fukuda M., Mikoshiba K. ( 2002). Synaptotagmin V is targeted to dense-core vesicles that undergo calcium-dependent exocytosis in PC12 cells. J Biol Chem 277:24499–24505 [View Article][PubMed]
    [Google Scholar]
  54. Salaün C., James D. J., Chamberlain L. H. ( 2004). Lipid rafts and the regulation of exocytosis. Traffic 5:255–264 [View Article][PubMed]
    [Google Scholar]
  55. Schneider B., Schueller C., Utermoehlen O., Haas A. ( 2007). Lipid microdomain-dependent macropinocytosis determines compartmentation of Afipia felis . Traffic 8:226–240 [View Article][PubMed]
    [Google Scholar]
  56. Späth G. F., Garraway L. A., Turco S. J., Beverley S. M. ( 2003). The role(s) of lipophosphoglycan (LPG) in the establishment of Leishmania major infections in mammalian hosts. Proc Natl Acad Sci U S A 100:9536–9541 [View Article][PubMed]
    [Google Scholar]
  57. Talamás-Rohana P., Wright S. D., Lennartz M. R., Russell D. G. ( 1990). Lipophosphoglycan from Leishmania mexicana promastigotes binds to members of the CR3, p150,95 and LFA-1 family of leukocyte integrins. J Immunol 144:4817–4824[PubMed]
    [Google Scholar]
  58. Tolson D. L., Turco S. J., Beecroft R. P., Pearson T. W. ( 1989). The immunochemical structure and surface arrangement of Leishmania donovani lipophosphoglycan determined using monoclonal antibodies. Mol Biochem Parasitol 35:109–118 [View Article][PubMed]
    [Google Scholar]
  59. Tolson D. L., Turco S. J., Pearson T. W. ( 1990). Expression of a repeating phosphorylated disaccharide lipophosphoglycan epitope on the surface of macrophages infected with Leishmania donovani . Infect Immun 58:3500–3507[PubMed]
    [Google Scholar]
  60. Vilhardt F., van Deurs B. ( 2004). The phagocyte NADPH oxidase depends on cholesterol-enriched membrane microdomains for assembly. EMBO J 23:739–748 [View Article][PubMed]
    [Google Scholar]
  61. Vinet A. F., Fukuda M., Descoteaux A. ( 2008). The exocytosis regulator synaptotagmin V controls phagocytosis in macrophages. J Immunol 181:5289–5295[PubMed] [CrossRef]
    [Google Scholar]
  62. Vinet A. F., Fukuda M., Turco S. J., Descoteaux A. ( 2009). The Leishmania donovani lipophosphoglycan excludes the vesicular proton-ATPase from phagosomes by impairing the recruitment of synaptotagmin V. PLoS Pathog 5:e1000628 [View Article][PubMed]
    [Google Scholar]
  63. Winberg M. E., Holm A., Särndahl E., Vinet A. F., Descoteaux A., Magnusson K. E., Rasmusson B., Lerm M. ( 2009). Leishmania donovani lipophosphoglycan inhibits phagosomal maturation via action on membrane rafts. Microbes Infect 11:215–222 [View Article][PubMed]
    [Google Scholar]
  64. Zaas D. W., Duncan M., Rae Wright J., Abraham S. N. ( 2005). The role of lipid rafts in the pathogenesis of bacterial infections. Biochim Biophys Acta 1746:305–313 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.050252-0
Loading
/content/journal/micro/10.1099/mic.0.050252-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error