Histone H4 lysine 14 acetylation in is mediated by the MYST-family protein HAT4 Free

Abstract

Post-translational modifications (PTMs) of histones regulate almost all facets of DNA metabolism in eukaryotes, such as replication, repair, transcription and chromatin condensation. While histone PTMs have been exhaustively examined in yeast and higher eukaryotes, less is known of their functional consequences in trypanosomatids. Trypanosome histones are highly divergent from those of other eukaryotes, and specific PTMs have been identified in histones of species. The characterization of three MYST-family histone acetyltransferases (HATs) in had earlier identified the HATs responsible for acetylation of two lysine residues, K4 and K10, in the N-terminal tail of histone H4. This report presents the results of what we believe to be the first study of a HAT in a species. The HAT4 gene of , the causative pathogen of visceral leishmaniasis, was cloned and expressed in fusion with GFP in promastigotes. We found that HAT4–GFP behaves differently from typical eukaryotic MYST-family HATs, which are usually constitutively nuclear, in that it is cytosolic throughout the cell cycle, although the protein is also present in the nucleus in post-mitotic cells. Substrate-specificity analyses revealed that LdHAT4 acetylates the N terminus of histone H4, but not those of H2A, H2B or H3. Nor does it acetylate the C terminus of H2A. The primary target of HAT4-mediated acetylation is the K14 residue of H4, although K2 may be a minor site as well. H4K14 acetylation in may occur either in the cytoplasm prior to histone deposition, or soon after mitosis in the nucleus.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.050211-0
2012-02-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/micro/158/2/328.html?itemId=/content/journal/micro/10.1099/mic.0.050211-0&mimeType=html&fmt=ahah

References

  1. Bannister A. J., Kouzarides T. ( 2011). Regulation of chromatin by histone modifications. Cell Res 21:381–395 [View Article][PubMed]
    [Google Scholar]
  2. Berriman M., Ghedin E., Hertz-Fowler C., Blandin G., Renauld H., Bartholomeu D. C., Lennard N. J., Caler E., Hamlin N. E. & other authors ( 2005). The genome of the African trypanosome Trypanosoma brucei . Science 309:416–422 [View Article][PubMed]
    [Google Scholar]
  3. da Cunha J. P., Nakayasu E. S., de Almeida I. C., Schenkman S. ( 2006). Post-translational modifications of Trypanosoma cruzi histone H4. Mol Biochem Parasitol 150:268–277 [View Article][PubMed]
    [Google Scholar]
  4. El-Sayed N. M., Myler P. J., Bartholomeu D. C., Nilsson D., Aggarwal G., Tran A. N., Ghedin E., Worthey E. A., Delcher A. L. & other authors ( 2005). The genome sequence of Trypanosoma cruzi, etiologic agent of Chagas disease. Science 309:409–415 [View Article][PubMed]
    [Google Scholar]
  5. Ha D. S., Schwarz J. K., Turco S. J., Beverley S. M. ( 1996). Use of the green fluorescent protein as a marker in transfected Leishmania . Mol Biochem Parasitol 77:57–64 [View Article][PubMed]
    [Google Scholar]
  6. Iizuka M., Matsui T., Takisawa H., Smith M. M. ( 2006). Regulation of replication licensing by acetyltransferase Hbo1. Mol Cell Biol 26:1098–1108 [View Article][PubMed]
    [Google Scholar]
  7. Ivens A. C., Peacock C. S., Worthey E. A., Murphy L., Aggarwal G., Berriman M., Sisk E., Rajandream M. A., Adlem E. & other authors ( 2005). The genome of the kinetoplastid parasite, Leishmania major . Science 309:436–442 [View Article][PubMed]
    [Google Scholar]
  8. Janzen C. J., Fernandez J. P., Deng H., Diaz R., Hake S. B., Cross G. A. ( 2006). Unusual histone modifications in Trypanosoma brucei . FEBS Lett 580:2306–2310 [View Article][PubMed]
    [Google Scholar]
  9. Kawahara T., Siegel T. N., Ingram A. K., Alsford S., Cross G. A., Horn D. ( 2008). Two essential MYST-family proteins display distinct roles in histone H4K10 acetylation and telomeric silencing in trypanosomes. Mol Microbiol 69:1054–1068 [View Article][PubMed]
    [Google Scholar]
  10. Kimura A., Umehara T., Horikoshi M. ( 2002). Chromosomal gradient of histone acetylation established by Sas2p and Sir2p functions as a shield against gene silencing. Nat Genet 32:370–377 [View Article][PubMed]
    [Google Scholar]
  11. Kouzarides T. ( 2007). Chromatin modifications and their function. Cell 128:693–705 [View Article][PubMed]
    [Google Scholar]
  12. Kumar D., Mukherji A., Saha S. ( 2008). Expression and subcellular localization of ORC1 in Leishmania major . Biochem Biophys Res Commun 375:74–79 [View Article][PubMed]
    [Google Scholar]
  13. Kumar D., Minocha N., Rajanala K., Saha S. ( 2009). The distribution pattern of proliferating cell nuclear antigen in the nuclei of Leishmania donovani . Microbiology 155:3748–3757 [View Article][PubMed]
    [Google Scholar]
  14. Mandava V., Fernandez J. P., Deng H., Janzen C. J., Hake S. B., Cross G. A. ( 2007). Histone modifications in Trypanosoma brucei . Mol Biochem Parasitol 156:41–50 [View Article][PubMed]
    [Google Scholar]
  15. Miao J., Fan Q., Cui L., Li X., Wang H., Ning G., Reese J. C., Cui L. ( 2010). The MYST family histone acetyltransferase regulates gene expression and cell cycle in malaria parasite Plasmodium falciparum . Mol Microbiol 78:883–902 [View Article][PubMed]
    [Google Scholar]
  16. Millar C. B., Grunstein M. ( 2006). Genome-wide patterns of histone modifications in yeast. Nat Rev Mol Cell Biol 7:657–666 [View Article][PubMed]
    [Google Scholar]
  17. Minocha N., Kumar D., Rajanala K., Saha S. ( 2011a). Kinetoplast morphology and segregation pattern as a marker for cell cycle progression in Leishmania donovani . J Eukaryot Microbiol 58:249–253 [View Article][PubMed]
    [Google Scholar]
  18. Minocha N., Kumar D., Rajanala K., Saha S. ( 2011b). Characterization of Leishmania donovani MCM4: expression patterns and interaction with PCNA. PLoS ONE 6:e23107 [View Article][PubMed]
    [Google Scholar]
  19. Nardelli S. C., da Cunha J. P., Motta M. C., Schenkman S. ( 2009). Distinct acetylation of Trypanosoma cruzi histone H4 during cell cycle, parasite differentiation, and after DNA damage. Chromosoma 118:487–499 [View Article][PubMed]
    [Google Scholar]
  20. Peacock C. S., Seeger K., Harris D., Murphy L., Ruiz J. C., Quail M. A., Peters N., Adlem E., Tivey A. & other authors ( 2007). Comparative genomic analysis of three Leishmania species that cause diverse human disease. Nat Genet 39:839–847 [View Article][PubMed]
    [Google Scholar]
  21. Robinson K. A., Beverley S. M. ( 2003). Improvements in transfection efficiency and tests of RNA interference (RNAi) approaches in the protozoan parasite Leishmania . Mol Biochem Parasitol 128:217–228 [View Article][PubMed]
    [Google Scholar]
  22. Shogren-Knaak M., Peterson C. L. ( 2006). Switching on chromatin: mechanistic role of histone H4-K16 acetylation. Cell Cycle 5:1361–1365 [View Article][PubMed]
    [Google Scholar]
  23. Shogren-Knaak M., Ishii H., Sun J. M., Pazin M. J., Davie J. R., Peterson C. L. ( 2006). Histone H4-K16 acetylation controls chromatin structure and protein interactions. Science 311:844–847 [View Article][PubMed]
    [Google Scholar]
  24. Siegel T. N., Kawahara T., Degrasse J. A., Janzen C. J., Horn D., Cross G. A. ( 2008). Acetylation of histone H4K4 is cell cycle regulated and mediated by HAT3 in Trypanosoma brucei . Mol Microbiol 67:762–771 [View Article][PubMed]
    [Google Scholar]
  25. Smith C. M., Gafken P. R., Zhang Z., Gottschling D. E., Smith J. B., Smith D. L. ( 2003). Mass spectrometric quantification of acetylation at specific lysines within the amino-terminal tail of histone H4. Anal Biochem 316:23–33 [View Article][PubMed]
    [Google Scholar]
  26. Smith A. T., Tucker-Samaras S. D., Fairlamb A. H., Sullivan W. J. Jr ( 2005). MYST family histone acetyltransferases in the protozoan parasite Toxoplasma gondii . Eukaryot Cell 4:2057–2065 [View Article][PubMed]
    [Google Scholar]
  27. Sterner D. E., Berger S. L. ( 2000). Acetylation of histones and transcription-related factors. Microbiol Mol Biol Rev 64:435–459 [View Article][PubMed]
    [Google Scholar]
  28. Strahl B. D., Allis C. D. ( 2000). The language of covalent histone modifications. Nature 403:41–45 [View Article][PubMed]
    [Google Scholar]
  29. Suka N., Luo K., Grunstein M. ( 2002). Sir2p and Sas2p opposingly regulate acetylation of yeast histone H4 lysine16 and spreading of heterochromatin. Nat Genet 32:378–383 [View Article][PubMed]
    [Google Scholar]
  30. Thomas S., Green A., Sturm N. R., Campbell D. A., Myler P. J. ( 2009). Histone acetylations mark origins of polycistronic transcription in Leishmania major . BMC Genomics 10:152 [View Article][PubMed]
    [Google Scholar]
  31. Vonlaufen N., Naguleswaran A., Coppens I., Sullivan W. J. Jr ( 2010). MYST family lysine acetyltransferase facilitates ataxia telangiectasia mutated (ATM) kinase-mediated DNA damage response in Toxoplasma gondii . J Biol Chem 285:11154–11161 [View Article][PubMed]
    [Google Scholar]
  32. Waterhouse A. M., Procter J. B., Martin D. M., Clamp M., Barton G. J. ( 2009). Jalview Version 2–a multiple sequence alignment editor and analysis workbench. Bioinformatics 25:1189–1191 [View Article][PubMed]
    [Google Scholar]
  33. Wheeler R. J., Gluenz E., Gull K. ( 2011). The cell cycle of Leishmania: morphogenetic events and their implications for parasite biology. Mol Microbiol 79:647–662 [View Article][PubMed]
    [Google Scholar]
  34. Yan Y., Barlev N. A., Haley R. H., Berger S. L., Marmorstein R. ( 2000). Crystal structure of yeast Esa1 suggests a unified mechanism for catalysis and substrate binding by histone acetyltransferases. Mol Cell 6:1195–1205 [View Article][PubMed]
    [Google Scholar]
  35. Yan Y., Harper S., Speicher D. W., Marmorstein R. ( 2002). The catalytic mechanism of the ESA1 histone acetyltransferase involves a self-acetylated intermediate. Nat Struct Biol 9:862–869[PubMed] [CrossRef]
    [Google Scholar]
  36. Yun M., Wu J., Workman J. L., Li B. ( 2011). Readers of histone modifications. Cell Res 21:564–578 [View Article][PubMed]
    [Google Scholar]
  37. Zhang K., Zheng G., Yang Y.-C. ( 2007). Stability of Nmi protein is controlled by its association with Tip60. Mol Cell Biochem 303:1–8 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.050211-0
Loading
/content/journal/micro/10.1099/mic.0.050211-0
Loading

Data & Media loading...

Most cited Most Cited RSS feed