1887

Abstract

The intracellular multiplication factor (IcmF) protein is a component of the recently described type VI secretion system (T6SS). IcmF has been shown to be required for intra-macrophage replication and inhibition of phagosome–lysosome fusion in . In it is involved in motility, adherence and conjugation. Given that we previously reported that two T6SS genes ( and ) contribute to the pathogenesis of a septicaemic strain (SEPT362) of avian pathogenic (APEC), we investigated the function of IcmF in this strain. Further elucidation of the virulence mechanisms of APEC is important because this pathogen is responsible for financial losses in the poultry industry, and is closely related to human extraintestinal pathogenic (ExPEC) strains, representing a potential zoonotic risk, as well as serving as a reservoir of virulence genes. Here we show that an APEC mutant has decreased adherence to and invasion of epithelial cells, as well as decreased intra-macrophage survival. The mutant is also defective for biofilm formation on abiotic surfaces. Additionally, expression of the flagella operon is decreased in the mutant, leading to decreased motility. The combination of these phenotypes culminates in this mutant being altered for infection in chicks. These results suggest that IcmF in APEC may play a role in disease, and potentially also in the epidemiological spread of this pathogen through enhancement of biofilm formation.

Funding
This study was supported by the:
  • , NIH , (Award AI053067)
  • , FAPESP , (Award 07/50432-3 and 2008/56739-6)
  • , CAPES , (Award 4062086)
  • , CAPES/PNPD , (Award 041/2009)
Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.050005-0
2011-10-01
2021-01-17
Loading full text...

Full text loading...

/deliver/fulltext/micro/157/10/2954.html?itemId=/content/journal/micro/10.1099/mic.0.050005-0&mimeType=html&fmt=ahah

References

  1. Apel D., Surette M. G. ( 2008). Bringing order to a complex molecular machine: the assembly of the bacterial flagella. Biochim Biophys Acta 1778:1851–1858 [CrossRef][PubMed]
    [Google Scholar]
  2. Barnes H. J., Vaillancourt S. S., Gross W. G. ( 2003). Diseases in poultry. Colibacillosis631–652 Saif Y. M. Iowa: Iowa State University Press, Ames;
    [Google Scholar]
  3. Bingle L. E., Bailey C. M., Pallen M. J. ( 2008). Type VI secretion: a beginner’s guide. Curr Opin Microbiol 11:3–8 [CrossRef][PubMed]
    [Google Scholar]
  4. Boudeau J., Barnich N., Darfeuille-Michaud A. ( 2001). Type 1 pili-mediated adherence of Escherichia coli strain LF82 isolated from Crohn’s disease is involved in bacterial invasion of intestinal epithelial cells. Mol Microbiol 39:1272–1284 [CrossRef][PubMed]
    [Google Scholar]
  5. Cascales E. ( 2008). The type VI secretion toolkit. EMBO Rep 9:735–741 [CrossRef][PubMed]
    [Google Scholar]
  6. Chilcott G. S., Hughes K. T. ( 2000). Coupling of flagellar gene expression to flagellar assembly in Salmonella enterica serovar Typhimurium and Escherichia coli. Microbiol Mol Biol Rev 64:694–708 [CrossRef][PubMed]
    [Google Scholar]
  7. Christensen G. D., Simpson W. A., Younger J. J., Baddour L. M., Barrett F. F., Melton D. M., Beachey E. H. ( 1985). Adherence of coagulase-negative staphylococci to plastic tissue culture plates: a quantitative model for the adherence of staphylococci to medical devices. J Clin Microbiol 22:996–1006[PubMed]
    [Google Scholar]
  8. Clarke M. B., Sperandio V. ( 2005). Transcriptional regulation of flhDC by QseBC and sigma (FliA) in enterohaemorrhagic Escherichia coli. Mol Microbiol 57:1734–1749 [CrossRef][PubMed]
    [Google Scholar]
  9. Connell I., Agace W., Klemm P., Schembri M., Mărild S., Svanborg C. ( 1996). Type 1 fimbrial expression enhances Escherichia coli virulence for the urinary tract. Proc Natl Acad Sci U S A 93:9827–9832 [CrossRef][PubMed]
    [Google Scholar]
  10. Das S., Chakrabortty A., Banerjee R., Chaudhuri K. ( 2002). Involvement of in vivo induced icmF gene of Vibrio cholerae in motility, adherence to epithelial cells, and conjugation frequency. Biochem Biophys Res Commun 295:922–928 [CrossRef][PubMed]
    [Google Scholar]
  11. Datsenko K. A., Wanner B. L. ( 2000). One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc Natl Acad Sci U S A 97:6640–6645 [CrossRef][PubMed]
    [Google Scholar]
  12. de Pace F., Nakazato G., Pacheco A., de Paiva J. B., Sperandio V., da Silveira W. D. ( 2010). The type VI secretion system plays a role in type 1 fimbria expression and pathogenesis of an avian pathogenic Escherichia coli strain. Infect Immun 78:4990–4998 [CrossRef][PubMed]
    [Google Scholar]
  13. Dho-Moulin M., Fairbrother J. M. ( 1999). Avian pathogenic Escherichia coli (APEC). Vet Res 30:299–316[PubMed]
    [Google Scholar]
  14. Fierer J., Eckmann L., Fang F., Pfeifer C., Finlay B. B., Guiney D. ( 1993). Expression of the Salmonella virulence plasmid gene spvB in cultured macrophages and nonphagocytic cells. Infect Immun 61:5231–5236[PubMed]
    [Google Scholar]
  15. Filloux A., Hachani A., Bleves S. ( 2008). The bacterial type VI secretion machine: yet another player for protein transport across membranes. Microbiology 154:1570–1583 [CrossRef][PubMed]
    [Google Scholar]
  16. Finlay B. B., Ruschkowski S., Dedhar S. ( 1991). Cytoskeletal rearrangements accompanying salmonella entry into epithelial cells. J Cell Sci 99:283–296[PubMed]
    [Google Scholar]
  17. Fritsch E. F., Sambrook J., Maniatis T. ( 1989). Molecular Cloning Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  18. Gray C. G., Cowley S. C., Cheung K. K., Nano F. E. ( 2002). The identification of five genetic loci of Francisella novicida associated with intracellular growth. FEMS Microbiol Lett 215:53–56 [CrossRef][PubMed]
    [Google Scholar]
  19. Gross W. G. ( 1994). Diseases due to Escherichia coli in poultry. Escherichia coli in Domestic Animals and Humans237–259 Gyles C. L. Wallingford, UK: CAB International;
    [Google Scholar]
  20. Gyles C. L. ( 1993). Escherichia coli . Pathogenesis of Bacterial Infections in Animals164–187 Gyles C. L., Thoen C. O. Ames: Iowa State University Press;
    [Google Scholar]
  21. Hilbi H., Segal G., Shuman H. A. ( 2001). Icm/Dot-dependent upregulation of phagocytosis by Legionella pneumophila. Mol Microbiol 42:603–617 [CrossRef][PubMed]
    [Google Scholar]
  22. Johnson T. J., Wannemuehler Y., Johnson S. J., Stell A. L., Doetkott C., Johnson J. R., Kim K. S., Spanjaard L., Nolan L. K. ( 2008). Comparison of extraintestinal pathogenic Escherichia coli strains from human and avian sources reveals a mixed subset representing potential zoonotic pathogens. Appl Environ Microbiol 74:7043–7050 [CrossRef][PubMed]
    [Google Scholar]
  23. Khan N. A., Kim Y., Shin S., Kim K. S. ( 2007). FimH-mediated Escherichia coli K1 invasion of human brain microvascular endothelial cells. Cell Microbiol 9:169–178 [CrossRef][PubMed]
    [Google Scholar]
  24. Kirby J. E., Vogel J. P., Andrews H. L., Isberg R. R. ( 1998). Evidence for pore-forming ability by Legionella pneumophila. Mol Microbiol 27:323–336 [CrossRef][PubMed]
    [Google Scholar]
  25. La Ragione R. M., Woodward M. J. ( 2002). Virulence factors of Escherichia coli serotypes associated with avian colisepticaemia. Res Vet Sci 73:27–35 [CrossRef][PubMed]
    [Google Scholar]
  26. Liu X., Matsumura P. ( 1994). The FlhD/FlhC complex, a transcriptional activator of the Escherichia coli flagellar class II operons. J Bacteriol 176:7345–7351[PubMed]
    [Google Scholar]
  27. Marc D., Arné P., Brée A., Dho-Moulin M. ( 1998). Colonization ability and pathogenic properties of a Fim mutant of an avian strain of Escherichia coli. Res Microbiol 149:473–485 [CrossRef][PubMed]
    [Google Scholar]
  28. Martinez J. J., Mulvey M. A., Schilling J. D., Pinkner J. S., Hultgren S. J. ( 2000). Type 1 pilus-mediated bacterial invasion of bladder epithelial cells. EMBO J 19:2803–2812 [CrossRef][PubMed]
    [Google Scholar]
  29. Mellata M., Dho-Moulin M., Dozois C. M., Curtiss R. III, Brown P. K., Arné P., Brée A., Desautels C., Fairbrother J. M. ( 2003). Role of virulence factors in resistance of avian pathogenic Escherichia coli to serum and in pathogenicity. Infect Immun 71:536–540 [CrossRef][PubMed]
    [Google Scholar]
  30. Mulvey M. A. ( 2002). Adhesion and entry of uropathogenic Escherichia coli. Cell Microbiol 4:257–271 [CrossRef][PubMed]
    [Google Scholar]
  31. Mysorekar I. U., Hultgren S. J. ( 2006). Mechanisms of uropathogenic Escherichia coli persistence and eradication from the urinary tract. Proc Natl Acad Sci U S A 103:14170–14175 [CrossRef][PubMed]
    [Google Scholar]
  32. Ottemann K. M., Miller J. F. ( 1997). Roles for motility in bacterial-host interactions. Mol Microbiol 24:1109–1117 [CrossRef][PubMed]
    [Google Scholar]
  33. Parsons D. A., Heffron F. ( 2005). sciS, an icmF homolog in Salmonella enterica serovar Typhimurium, limits intracellular replication and decreases virulence. Infect Immun 73:4338–4345 [CrossRef][PubMed]
    [Google Scholar]
  34. Pfeifer C. G., Marcus S. L., Steele-Mortimer O., Knodler L. A., Finlay B. B. ( 1999). Salmonella typhimurium virulence genes are induced upon bacterial invasion into phagocytic and nonphagocytic cells. Infect Immun 67:5690–5698[PubMed]
    [Google Scholar]
  35. Pratt L. A., Kolter R. ( 1998). Genetic analysis of Escherichia coli biofilm formation: roles of flagella, motility, chemotaxis and type I pili. Mol Microbiol 30:285–293 [CrossRef][PubMed]
    [Google Scholar]
  36. Pukatzki S., McAuley S. B., Miyata S. T. ( 2009). The type VI secretion system: translocation of effectors and effector-domains. Curr Opin Microbiol 12:11–17 [CrossRef][PubMed]
    [Google Scholar]
  37. Purcell M., Shuman H. A. ( 1998). The Legionella pneumophila icmGCDJBF genes are required for killing of human macrophages. Infect Immun 66:2245–2255[PubMed]
    [Google Scholar]
  38. Sambrook J., Fritsch E. F., Maniatis T. ( 1989). Molecular Cloning: a Laboratory Manual, 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  39. Scaletsky I. C., Silva M. L., Trabulsi L. R. ( 1984). Distinctive patterns of adherence of enteropathogenic Escherichia coli to HeLa cells. Infect Immun 45:534–536[PubMed]
    [Google Scholar]
  40. Schell M. A., Ulrich R. L., Ribot W. J., Brueggemann E. E., Hines H. B., Chen D., Lipscomb L., Kim H. S., Mrázek J. et al. & other authors ( 2007). Type VI secretion is a major virulence determinant in Burkholderia mallei. Mol Microbiol 64:1466–1485 [CrossRef][PubMed]
    [Google Scholar]
  41. Schembri M. A., Klemm P. ( 2001). Biofilm formation in a hydrodynamic environment by novel fimh variants and ramifications for virulence. Infect Immun 69:1322–1328 [CrossRef][PubMed]
    [Google Scholar]
  42. Sexton J. A., Miller J. L., Yoneda A., Kehl-Fie T. E., Vogel J. P. ( 2004). Legionella pneumophila DotU and IcmF are required for stability of the Dot/Icm complex. Infect Immun 72:5983–5992 [CrossRef][PubMed]
    [Google Scholar]
  43. Shrivastava S., Mande S. S. ( 2008). Identification and functional characterization of gene components of type VI secretion system in bacterial genomes. PLoS ONE 3:e2955 [CrossRef][PubMed]
    [Google Scholar]
  44. Solomon J. M., Rupper A., Cardelli J. A., Isberg R. R. ( 2000). Intracellular growth of Legionella pneumophila in Dictyostelium discoideum, a system for genetic analysis of host-pathogen interactions. Infect Immun 68:2939–2947 [CrossRef][PubMed]
    [Google Scholar]
  45. VanRheenen S. M., Duménil G., Isberg R. R. ( 2004). IcmF and DotU are required for optimal effector translocation and trafficking of the Legionella pneumophila vacuole. Infect Immun 72:5972–5982 [CrossRef][PubMed]
    [Google Scholar]
  46. Vidotto M. C., Müller E. E., de Freitas J. C., Alfieri A. A., Guimarães I. G., Santos D. S. ( 1990). Virulence factors of avian Escherichia coli. Avian Dis 34:531–538 [CrossRef][PubMed]
    [Google Scholar]
  47. Walters M., Sperandio V. ( 2006). Autoinducer 3 and epinephrine signaling in the kinetics of locus of enterocyte effacement gene expression in enterohemorrhagic Escherichia coli. Infect Immun 74:5445–5455 [CrossRef][PubMed]
    [Google Scholar]
  48. Watarai M., Derre I., Kirby J., Growney J. D., Dietrich W. F., Isberg R. R. ( 2001). Legionella pneumophila is internalized by a macropinocytotic uptake pathway controlled by the Dot/Icm system and the mouse Lgn1 locus. J Exp Med 194:1081–1096 [CrossRef][PubMed]
    [Google Scholar]
  49. Watnick P. I., Kolter R. ( 1999). Steps in the development of a Vibrio cholerae El Tor biofilm. Mol Microbiol 34:586–595 [CrossRef][PubMed]
    [Google Scholar]
  50. Yaguchi K., Ogitani T., Osawa R., Kawano M., Kokumai N., Kaneshige T., Noro T., Masubuchi K., Shimizu Y. ( 2007). Virulence factors of avian pathogenic Escherichia coli strains isolated from chickens with colisepticemia in Japan. Avian Dis 51:656–662 [CrossRef][PubMed]
    [Google Scholar]
  51. Zhao L., Gao S., Huan H., Xu X., Zhu X., Yang W., Gao Q., Liu X. ( 2009). Comparison of virulence factors and expression of specific genes between uropathogenic Escherichia coli and avian pathogenic E. coli in a murine urinary tract infection model and a chicken challenge model. Microbiology 155:1634–1644 [CrossRef][PubMed]
    [Google Scholar]
  52. Zink S. D., Pedersen L., Cianciotto N. P., Abu-Kwaik Y. ( 2002). The Dot/Icm type IV secretion system of Legionella pneumophila is essential for the induction of apoptosis in human macrophages. Infect Immun 70:1657–1663 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.050005-0
Loading
/content/journal/micro/10.1099/mic.0.050005-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error