1887

Abstract

Rhizobia are a disparate collection of soil bacteria capable of reducing atmospheric nitrogen in symbiosis with legumes (Fix phenotype). Synthesis of the nitrogenase and its accessory components is under the transcriptional control of the key regulator NifA and is generally restricted to the endosymbiotic forms of rhizobia known as bacteroids. Amongst studied rhizobia, strain NGR234 has the remarkable ability to fix nitrogen in association with more than 130 species in 73 legume genera that form either determinate, indeterminate or aeschynomenoid nodules. Hence, NGR234 is a model organism to study nitrogen fixation in association with a variety of legumes. The symbiotic plasmid pSfrNGR234a carries more than 50 genes that are under the transcriptional control of NifA. To facilitate the functional analysis of NifA-regulated genes a new transposable element, Tn was constructed. This transposon combines the advantages of mutagenesis of cloned DNA fragments with a conditional read-out promoter from NGR234 (PwA) that reinitiates NifA-dependent transcription downstream of transposition sites. To test the characteristics of the new transposon, the y4vGHIJ operon was mutated using either the Omega interposon or Tn The symbiotic phenotypes on various hosts as well as the transcriptional characteristics of these mutants were analysed in detail and compared with the ineffective (Fix) phenotype of strain NGRΔ, which lacks a functional copy of . transcription from inserted copies of Tn inside bacteroids was confirmed by qRT-PCR. Unexpectedly, polar mutants in and were Fix on all of the hosts tested, indicating that none of the six genes of the operon of NGR234 is essential for symbiotic nitrogen fixation on plants that form nodules of either determinate or indeterminate types.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.049999-0
2011-10-01
2020-07-07
Loading full text...

Full text loading...

/deliver/fulltext/micro/157/10/2745.html?itemId=/content/journal/micro/10.1099/mic.0.049999-0&mimeType=html&fmt=ahah

References

  1. Aneja P., Charles T. C.. ( 2005;). Characterization of bdhA, encoding the enzyme d-3-hydroxybutyrate dehydrogenase, from Sinorhizobium sp. strain NGR234. FEMS Microbiol Lett242:87–94 [CrossRef][PubMed]
    [Google Scholar]
  2. Badenoch-Jones J., Holton T. A., Morrison C. M., Scott K. F., Shine J.. ( 1989;). Structural and functional analysis of nitrogenase genes from the broad-host-range Rhizobium strain ANU240. Gene77:141–153 [CrossRef][PubMed]
    [Google Scholar]
  3. Broughton W. J., Dilworth M. J.. ( 1971;). Control of leghaemoglobin synthesis in snake beans. Biochem J125:1075–1080[PubMed]
    [Google Scholar]
  4. Broughton W. J., Wong C.-H., Lewin A., Samrey U., Myint H., Meyer z. A. H., Dowling D. N., Simon R.. ( 1986;). Identification of Rhizobium plasmid sequences involved in recognition of Psophocarpus, Vigna, and other legumes. J Cell Biol102:1173–1182 [CrossRef][PubMed]
    [Google Scholar]
  5. David M., Daveran M. L., Batut J., Dedieu A., Domergue O., Ghai J., Hertig C., Boistard P., Kahn D.. ( 1988;). Cascade regulation of nif gene expression in Rhizobium meliloti . Cell54:671–683 [CrossRef][PubMed]
    [Google Scholar]
  6. Dixon R., Kahn D.. ( 2004;). Genetic regulation of biological nitrogen fixation. Nat Rev Microbiol2:621–631 [CrossRef][PubMed]
    [Google Scholar]
  7. Dombrecht B., Marchal K., Vanderleyden J., Michiels J.. ( 2002;). Prediction and overview of the RpoN-regulon in closely related species of the Rhizobiales. Genome Biol3:RESEARCH0076 [CrossRef][PubMed]
    [Google Scholar]
  8. Fellay R., Hanin M., Montorzi G., Frey J., Freiberg C., Golinowski W., Staehelin C., Broughton W. J., Jabbouri S.. ( 1998;). nodD2 of Rhizobium sp. NGR234 is involved in the repression of the nodABC operon. Mol Microbiol27:1039–1050 [CrossRef][PubMed]
    [Google Scholar]
  9. Figurski D. H., Helinski D. R.. ( 1979;). Replication of an origin-containing derivative of plasmid RK2 dependent on a plasmid function provided in trans . Proc Natl Acad Sci U S A76:1648–1652 [CrossRef][PubMed]
    [Google Scholar]
  10. Fischer H. M.. ( 1994;). Genetic regulation of nitrogen fixation in rhizobia. Microbiol Rev58:352–386[PubMed]
    [Google Scholar]
  11. Fischer H. M., Alvarez-Morales A., Hennecke H.. ( 1986;). The pleiotropic nature of symbiotic regulatory mutants: Bradyrhizobium japonicum nifA gene is involved in control of nif gene expression and formation of determinate symbiosis. EMBO J5:1165–1173[PubMed]
    [Google Scholar]
  12. Freiberg C., Fellay R., Bairoch A., Broughton W. J., Rosenthal A., Perret X.. ( 1997;). Molecular basis of symbiosis between Rhizobium and legumes. Nature387:394–401 [CrossRef][PubMed]
    [Google Scholar]
  13. Gage D. J.. ( 2004;). Infection and invasion of roots by symbiotic, nitrogen-fixing rhizobia during nodulation of temperate legumes. Microbiol Mol Biol Rev68:280–300 [CrossRef][PubMed]
    [Google Scholar]
  14. Gibson K. E., Kobayashi H., Walker G. C.. ( 2008;). Molecular determinants of a symbiotic chronic infection. Annu Rev Genet42:413–441 [CrossRef][PubMed]
    [Google Scholar]
  15. Golinowski W., Kopcińska J., Borucki W.. ( 1987;). The morphogenesis of lupine root nodules during infection by Rhizobium lupini . Acta Soc Bot Pol56:687–703[CrossRef]
    [Google Scholar]
  16. Hernandez J. A., Curatti L., Aznar C. P., Perova Z., Britt R. D., Rubio L. M.. ( 2008;). Metal trafficking for nitrogen fixation: NifQ donates molybdenum to NifEN/NifH for the biosynthesis of the nitrogenase FeMo-cofactor. Proc Natl Acad Sci U S A105:11679–11684 [CrossRef][PubMed]
    [Google Scholar]
  17. Hirsch A. M., Smith C. A.. ( 1987;). Effects of Rhizobium meliloti nif and fix mutants on alfalfa root nodule development. J Bacteriol169:1137–1146[PubMed]
    [Google Scholar]
  18. Imperial J., Ugalde R. A., Shah V. K., Brill W. J.. ( 1984;). Role of the nifQ gene product in the incorporation of molybdenum into nitrogenase in Klebsiella pneumoniae . J Bacteriol158:187–194[PubMed]
    [Google Scholar]
  19. Jefferson R. A., Burgess S. M., Hirsh D.. ( 1986;). β-Glucuronidase from Escherichia coli as a gene-fusion marker. Proc Natl Acad Sci U S A83:8447–8451 [CrossRef][PubMed]
    [Google Scholar]
  20. Kaneko T., Nakamura Y., Sato S., Asamizu E., Kato T., Sasamoto S., Watanabe A., Idesawa K., Ishikawa A. et al. ( 2000;). Complete genome structure of the nitrogen-fixing symbiotic bacterium Mesorhizobium loti . DNA Res7:331–338 [CrossRef][PubMed]
    [Google Scholar]
  21. Keister D. L., Tully R. E., Van Berkum P.. ( 1999;). A cytochrome P450 gene cluster in the Rhizobiaceae. J Gen Appl Microbiol45:301–303 [CrossRef][PubMed]
    [Google Scholar]
  22. Kim C.-H., Helinski D. R., Ditta G.. ( 1986;). Overlapping transcription of the nifA regulatory gene in Rhizobium meliloti . Gene50:141–148 [CrossRef][PubMed]
    [Google Scholar]
  23. Kobayashi H., Naciri-Graven Y., Broughton W. J., Perret X.. ( 2004;). Flavonoids induce temporal shifts in gene-expression of nod-box controlled loci in Rhizobium sp. NGR234. Mol Microbiol51:335–347 [CrossRef][PubMed]
    [Google Scholar]
  24. Labes M., Rastogi V., Watson R., Finan T. M.. ( 1993;). Symbiotic nitrogen fixation by a nifA deletion mutant of Rhizobium meliloti: the role of an unusual ntrC allele. J Bacteriol175:2662–2673[PubMed]
    [Google Scholar]
  25. Lewin A., Cervantes E., Chee-Hoong W., Broughton W. J.. ( 1990;). nodSU, two new nod genes of the broad host range Rhizobium strain NGR234 encode host-specific nodulation of the tropical tree Leucaena leucocephala . Mol Plant Microbe Interact3:317–326 [CrossRef][PubMed]
    [Google Scholar]
  26. Lopez O., Morera C., Miranda-Rios J., Girard L., Romero D., Soberón M.. ( 2001;). Regulation of gene expression in response to oxygen in Rhizobium etli: role of FnrN in fixNOQP expression and in symbiotic nitrogen fixation. J Bacteriol183:6999–7006 [CrossRef][PubMed]
    [Google Scholar]
  27. Luyten E., Swinnen E., Vlassak K., Verreth C., Dombrecht B., Vanderleyden J.. ( 2001;). Analysis of a symbiosis-specific cytochrome P450 homolog in Rhizobium sp. BR816. Mol Plant Microbe Interact14:918–924 [CrossRef][PubMed]
    [Google Scholar]
  28. Marie C., Deakin W. J., Viprey V., Kopcińska J., Golinowski W., Krishnan H. B., Perret X., Broughton W. J.. ( 2003;). Characterization of Nops, nodulation outer proteins, secreted via the type III secretion system of NGR234. Mol Plant Microbe Interact16:743–751 [CrossRef][PubMed]
    [Google Scholar]
  29. Masson-Boivin C., Giraud E., Perret X., Batut J.. ( 2009;). Establishing nitrogen-fixing symbiosis with legumes: how many rhizobium recipes?. Trends Microbiol17:458–466 [CrossRef][PubMed]
    [Google Scholar]
  30. Mergaert P., Uchiumi T., Alunni B., Evanno G., Cheron A., Catrice O., Mausset A. E., Barloy-Hubler F., Galibert F. et al. ( 2006;). Eukaryotic control on bacterial cell cycle and differentiation in the Rhizobium–legume symbiosis. Proc Natl Acad Sci U S A103:5230–5235 [CrossRef][PubMed]
    [Google Scholar]
  31. Moreno-Vivian C., Hennecke S., Pühler A., Klipp W.. ( 1989;). Open reading frame 5 (ORF5), encoding a ferredoxinlike protein, and nifQ are cotranscribed with nifE, nifN, nifX, and ORF4 in Rhodobacter capsulatus . J Bacteriol171:2591–2598[PubMed]
    [Google Scholar]
  32. Müller P.. ( 2004;). Use of the multipurpose transposon TnKPK2 for the mutational analysis of chromosomal regions upstream and downstream of the sipF gene in Bradyrhizobium japonicum . Mol Genet Genomics271:359–366 [CrossRef][PubMed]
    [Google Scholar]
  33. Müller J., Wiemken A., Boller T.. ( 2001;). Redifferentiation of bacteria isolated from Lotus japonicus root nodules colonized by Rhizobium sp. NGR234. J Exp Bot52:2181–2186[PubMed]
    [Google Scholar]
  34. Oldroyd G. E., Downie J. A.. ( 2008;). Coordinating nodule morphogenesis with rhizobial infection in legumes. Annu Rev Plant Biol59:519–546 [CrossRef][PubMed]
    [Google Scholar]
  35. Østerås M., Finan T. M., Stanley J.. ( 1991;). Site-directed mutagenesis and DNA sequence of pckA of Rhizobium NGR234, encoding phosphoenolpyruvate carboxykinase: gluconeogenesis and host-dependent symbiotic phenotype. Mol Gen Genet230:257–269 [CrossRef][PubMed]
    [Google Scholar]
  36. Perret X., Broughton W. J., Brenner S.. ( 1991;). Canonical ordered cosmid library of the symbiotic plasmid of Rhizobium species NGR234. Proc Natl Acad Sci U S A88:1923–1927 [CrossRef][PubMed]
    [Google Scholar]
  37. Perret X., Freiberg C., Rosenthal A., Broughton W. J., Fellay R.. ( 1999;). High-resolution transcriptional analysis of the symbiotic plasmid of Rhizobium sp. NGR234. Mol Microbiol32:415–425 [CrossRef][PubMed]
    [Google Scholar]
  38. Perret X., Staehelin C., Broughton W. J.. ( 2000;). Molecular basis of symbiotic promiscuity. Microbiol Mol Biol Rev64:180–201 [CrossRef][PubMed]
    [Google Scholar]
  39. Perret X., Kobayashi H., Collado-Vides J.. ( 2003;). Regulation of expression of symbiotic genes in Rhizobium sp. NGR234. Indian J Exp Biol41:1101–1113[PubMed]
    [Google Scholar]
  40. Prentki P., Krisch H. M.. ( 1984;). In vitro insertional mutagenesis with a selectable DNA fragment. Gene29:303–313 [CrossRef][PubMed]
    [Google Scholar]
  41. Pueppke S. G., Broughton W. J.. ( 1999;). Rhizobium sp. strain NGR234 and R. fredii USDA257 share exceptionally broad, nested host ranges. Mol Plant Microbe Interact12:293–318 [CrossRef][PubMed]
    [Google Scholar]
  42. Quandt J., Hynes M. F.. ( 1993;). Versatile suicide vectors which allow direct selection for gene replacement in Gram-negative bacteria. Gene127:15–21 [CrossRef][PubMed]
    [Google Scholar]
  43. Relić B., Talmont F., Kopcińska J., Golinowski W., Promé J. C., Broughton W. J.. ( 1993;). Biological activity of Rhizobium sp. NGR234 Nod-factors on Macroptilium atropurpureum . Mol Plant Microbe Interact6:764–774 [CrossRef][PubMed]
    [Google Scholar]
  44. Rodríguez-Quiñones F., Bosch R., Imperial J.. ( 1993;). Expression of the nifBfdxNnifOQ region of Azotobacter vinelandii and its role in nitrogenase activity. J Bacteriol175:2926–2935[PubMed]
    [Google Scholar]
  45. Rosander A., Frykberg L., Ausmees N., Müller P.. ( 2003;). Identification of extracytoplasmic proteins in Bradyrhizobium japonicum using phage display. Mol Plant Microbe Interact16:727–737 [CrossRef][PubMed]
    [Google Scholar]
  46. Roth L. E., Jeon K. W., Stacey G.. ( 1988;). Homology in endosymbiotic systems: the term ‘symbiosome’. Molecular Genetics of Plant-Microbe Interactions220–225 Palacios D. P. S. Verma & R.. St Paul, Minnesota: APS Press;
    [Google Scholar]
  47. Sambrook J., Fritsch E. F., Maniatis T.. ( 1989;). Molecular Cloning: a Laboratory Manual, 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor University;
    [Google Scholar]
  48. Schmeisser C., Liesegang H., Krysciak D., Bakkou N., Le Quéré A., Wollherr A., Heinemeyer I., Morgenstern B., Pommerening-Röser A. et al. ( 2009;). Rhizobium sp. strain NGR234 possesses a remarkable number of secretion systems. Appl Environ Microbiol75:4035–4045 [CrossRef][PubMed]
    [Google Scholar]
  49. Stanley J., Dowling D. N., Broughton W. J.. ( 1988;). Cloning of hemA from Rhizobium sp. NGR234 and symbiotic phenotype of a gene-directed mutant in diverse legume genera. Mol Gen Genet215:32–37 [CrossRef]
    [Google Scholar]
  50. Stanley J., van Slooten J. C., Dowling D. N., Finan T. M., Broughton W. J.. ( 1989;). Molecular cloning of the ntrA gene of the broad host-range Rhizobium sp. NGR234, and phenotypes of a site directed mutant. Mol Gen Genet217:528–532 [CrossRef]
    [Google Scholar]
  51. Sullivan J. T., Trzebiatowski J. R., Cruickshank R. W., Gouzy J., Brown S. D., Elliot R. M., Fleetwood D. J., McCallum N. G., Rossbach U. et al. ( 2002;). Comparative sequence analysis of the symbiosis island of Mesorhizobium loti strain R7A. J Bacteriol184:3086–3095 [CrossRef][PubMed]
    [Google Scholar]
  52. Trainer M. A., Charles T. C.. ( 2006;). The role of PHB metabolism in the symbiosis of rhizobia with legumes. Appl Microbiol Biotechnol71:377–386 [CrossRef][PubMed]
    [Google Scholar]
  53. Trinick M. J.. ( 1980;). Relationships amongst the fast-growing rhizobia of Lablab purpureus, Leucaena leucocephala, Mimosa spp., Acacia farnesiana and Sesbania grandiflora and their affinities with other rhizobial groups. J Appl Bact49:39–53[CrossRef]
    [Google Scholar]
  54. Tully R. E., Keister D. L.. ( 1993;). Cloning and mutagenesis of a cytochrome P-450 locus from Bradyrhizobium japonicum that is expressed anaerobically and symbiotically. Appl Environ Microbiol59:4136–4142[PubMed]
    [Google Scholar]
  55. Tully R. E., van Berkum P., Lovins K. W., Keister D. L.. ( 1998;). Identification and sequencing of a cytochrome P450 gene cluster from Bradyrhizobium japonicum . Biochim Biophys Acta1398:243–255[PubMed][CrossRef]
    [Google Scholar]
  56. Van de Velde W., Zehirov G., Szatmari A., Debreczeny M., Ishihara H., Kevei Z., Farkas A., Mikulass K., Nagy A. et al. ( 2010;). Plant peptides govern terminal differentiation of bacteria in symbiosis. Science327:1122–1126 [CrossRef][PubMed]
    [Google Scholar]
  57. Van den Eede G., Deblaere R., Goethals K., Van Montagu M., Holsters M.. ( 1992;). Broad host range and promoter selection vectors for bacteria that interact with plants. Mol Plant Microbe Interact5:228–234 [CrossRef][PubMed]
    [Google Scholar]
  58. van Slooten J. C., Cervantes E., Broughton W. J., Wong C. H., Stanley J.. ( 1990;). Sequence and analysis of the rpoN sigma factor gene of Rhizobium sp. strain NGR234, a primary coregulator of symbiosis. J Bacteriol172:5563–5574[PubMed]
    [Google Scholar]
  59. van Slooten J. C., Bhuvanasvari T. V., Bardin S., Stanley J.. ( 1992;). Two C4-dicarboxylate transport systems in Rhizobium sp. NGR234: rhizobial dicarboxylate transport is essential for nitrogen fixation in tropical legume symbioses. Mol Plant Microbe Interact5:179–186 [CrossRef][PubMed]
    [Google Scholar]
  60. Viprey V., Del Greco A., Golinowski W., Broughton W. J., Perret X.. ( 1998;). Symbiotic implications of type III protein secretion machinery in Rhizobium . Mol Microbiol28:1381–1389 [CrossRef][PubMed]
    [Google Scholar]
  61. Yurgel S. N., Kahn M. L.. ( 2004;). Dicarboxylate transport by rhizobia. FEMS Microbiol Rev28:489–501 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.049999-0
Loading
/content/journal/micro/10.1099/mic.0.049999-0
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error