1887

Abstract

In the complete genome sequences of NCTC9343 and 638R, we have discovered a gene, the product of which has 63 % identity to human ubiquitin and cross-reacts with antibodies raised against bovine ubiquitin. The sequence of is closest in identity (76 %) to the ubiquitin gene from a migratory grasshopper entomopoxvirus, suggesting acquisition by inter-kingdom horizontal gene transfer. We have screened clinical isolates of from diverse geographical regions and found that is present in some, but not all, strains. The gene is transcribed and the mRNA is translated in , but deletion of did not have a detrimental effect on growth. BfUbb has a predicted signal sequence; both full-length and processed forms were detected in whole-cell extracts, while the processed form was found in concentrated culture supernatants. Purified recombinant BfUbb inhibited ubiquitination and was able to covalently bind the human E1 activating enzyme, suggesting it could act as a suicide substrate . is one of the predominant members of the normal human gastrointestinal microbiota with estimates of up to >10 cells per g faeces by culture. These data indicate that the gastro-intestinal tract of some individuals could contain a significant amount of aberrant ubiquitin with the potential to inappropriately activate the host immune system and/or interfere with eukaryotic ubiquitin activity. This discovery could have profound implications in relation to our understanding of human diseases such as inflammatory bowel and autoimmune diseases.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.049940-0
2011-11-01
2020-02-21
Loading full text...

Full text loading...

/deliver/fulltext/micro/157/11/3071.html?itemId=/content/journal/micro/10.1099/mic.0.049940-0&mimeType=html&fmt=ahah

References

  1. Bhoj V. G., Chen Z. J..( 2009;). Ubiquitylation in innate and adaptive immunity. Nature458:430–437 [CrossRef][PubMed]
    [Google Scholar]
  2. Bomberger J. M., Maceachran D. P., Coutermarsh B. A., Ye S., O’Toole G. A., Stanton B. A..( 2009;). Long-distance delivery of bacterial virulence factors by Pseudomonas aeruginosa outer membrane vesicles. PLoS Pathog5:e1000382 [CrossRef][PubMed]
    [Google Scholar]
  3. Boyer L., Lemichez E..( 2004;). Targeting of host-cell ubiquitin and ubiquitin-like pathways by bacterial factors. Nat Rev Microbiol2:779–788 [CrossRef][PubMed]
    [Google Scholar]
  4. Cadwell K., Coscoy L..( 2005;). Ubiquitination on nonlysine residues by a viral E3 ubiquitin ligase. Science309:127–130 [CrossRef][PubMed]
    [Google Scholar]
  5. Carver T., Berriman M., Tivey A., Patel C., Böhme U., Barrell B. G., Parkhill J., Rajandream M. A..( 2008;). Artemis and ACT: viewing, annotating and comparing sequences stored in a relational database. Bioinformatics24:2672–2676 [CrossRef][PubMed]
    [Google Scholar]
  6. Cerdeño-Tárraga A. M., Patrick S., Crossman L. C., Blakely G., Abratt V., Lennard N., Poxton I., Duerden B., Harris B. et al.& other authors ( 2005;). Extensive DNA inversions in the B. fragilis genome control variable gene expression. Science307:1463–1465 [CrossRef][PubMed]
    [Google Scholar]
  7. Cheng C. W., Lin H. S., Ye J. J., Yang C. C., Chiang P. C., Wu T. S., Lee M. H..( 2009;). Clinical significance of and outcomes for Bacteroides fragilis bacteremia. J Microbiol Immunol Infect42:243–250 [CrossRef][PubMed]
    [Google Scholar]
  8. Erbse A., Schmidt R., Bornemann T., Schneider-Mergener J., Mogk A., Zahn R., Dougan D. A., Bukau B..( 2006;). ClpS is an essential component of the N-end rule pathway in Escherichia coli. Nature439:753–756 [CrossRef][PubMed]
    [Google Scholar]
  9. Fletcher C. M., Coyne M. J., Comstock L. E..( 2011;). Theoretical and experimental characterization of the scope of protein O-glycosylation in Bacteroides fragilis. J Biol Chem286:3219–3226 [CrossRef][PubMed]
    [Google Scholar]
  10. Gottesman S., Roche E., Zhou Y., Sauer R. T..( 1998;). The ClpXP and ClpAP proteases degrade proteins with carboxy-terminal peptide tails added by the SsrA-tagging system. Genes Dev12:1338–1347 [CrossRef][PubMed]
    [Google Scholar]
  11. Hochstrasser M..( 2009;). Origin and function of ubiquitin-like proteins. Nature458:422–429 [CrossRef][PubMed]
    [Google Scholar]
  12. Karin M., Ben-Neriah Y..( 2000;). Phosphorylation meets ubiquitination: the control of NF-κB activity. Annu Rev Immunol18:621–663 [CrossRef][PubMed]
    [Google Scholar]
  13. Komander D..( 2009;). The emerging complexity of protein ubiquitination. Biochem Soc Trans37:937–953 [CrossRef][PubMed]
    [Google Scholar]
  14. Komatsu M., Ichimura Y..( 2010;). Selective autophagy regulates various cellular functions. Genes Cells15:923–933 [CrossRef][PubMed]
    [Google Scholar]
  15. Kuehn M. J., Kesty N. C..( 2005;). Bacterial outer membrane vesicles and the host–pathogen interaction. Genes Dev19:2645–2655 [CrossRef][PubMed]
    [Google Scholar]
  16. Kuwahara T., Yamashita A., Hirakawa H., Nakayama H., Toh H., Okada N., Kuhara S., Hattori M., Hayashi T., Ohnishi Y..( 2004;). Genomic analysis of Bacteroides fragilis reveals extensive DNA inversions regulating cell surface adaptation. Proc Natl Acad Sci U S A101:14919–14924 [CrossRef][PubMed]
    [Google Scholar]
  17. Le Negrate G., Krieg A., Faustin B., Loeffler M., Godzik A., Krajewski S., Reed J. C..( 2008;). ChlaDub1 of Chlamydia trachomatis suppresses NF-κB activation and inhibits IκBα ubiquitination and degradation. Cell Microbiol10:1879–1892 [CrossRef][PubMed]
    [Google Scholar]
  18. Marks D. J., Rahman F. Z., Sewell G. W., Segal A. W..( 2010;). Crohn’s disease: an immune deficiency state. Clin Rev Allergy Immunol38:20–31 [CrossRef][PubMed]
    [Google Scholar]
  19. Patrick S..( 2002;). Bacteroides. Molecular Medical Microbiology1921–1948 Sussman M.. London: Academic Press; [CrossRef]
    [Google Scholar]
  20. Patrick S., Duerden B. I..( 2006;). Gram-negative non-spore forming obligate anaerobes. Principles and Practice of Clinical Bacteriology, 2nd edn.541–556 Gillespie S. H., Hawkey P.. London: Wiley; [CrossRef]
    [Google Scholar]
  21. Patrick S., McKenna J. P., O’Hagan S., Dermott E..( 1996;). A comparison of the haemagglutinating and enzymic activities of Bacteroides fragilis whole cells and outer membrane vesicles. Microb Pathog20:191–202 [CrossRef][PubMed]
    [Google Scholar]
  22. Patrick S., Houston S., Thacker Z., Blakely G. W..( 2009;). Mutational analysis of genes implicated in LPS and capsular polysaccharide biosynthesis in the opportunistic pathogen Bacteroides fragilis. Microbiology155:1039–1049 [CrossRef][PubMed]
    [Google Scholar]
  23. Patrick S., Blakely G. W., Houston S., Moore J., Abratt V. R., Bertalan M., Cerdeño-Tárraga A. M., Quail M. A., Corton N. et al.& other authors ( 2010;). Twenty-eight divergent polysaccharide loci specifying within- and amongst-strain capsule diversity in three strains of Bacteroides fragilis. Microbiology156:3255–3269 [CrossRef][PubMed]
    [Google Scholar]
  24. Pearce M. J., Mintseris J., Ferreyra J., Gygi S. P., Darwin K. H..( 2008;). Ubiquitin-like protein involved in the proteasome pathway of Mycobacterium tuberculosis. Science322:1104–1107 [CrossRef][PubMed]
    [Google Scholar]
  25. Perrin A. J., Jiang X., Birmingham C. L., So N. S., Brumell J. H..( 2004;). Recognition of bacteria in the cytosol of Mammalian cells by the ubiquitin system. Curr Biol14:806–811 [CrossRef][PubMed]
    [Google Scholar]
  26. Rodríguez J. E., Schisler J. C., Patterson C., Willis M. S..( 2009;). Seek and destroy: the ubiquitin–proteasome system in cardiac disease. Curr Hypertens Rep11:396–405 [CrossRef][PubMed]
    [Google Scholar]
  27. Rytkönen A., Poh J., Garmendia J., Boyle C., Thompson A., Liu M., Freemont P., Hinton J. C., Holden D. W..( 2007;). SseL, a Salmonella deubiquitinase required for macrophage killing and virulence. Proc Natl Acad Sci U S A104:3502–3507 [CrossRef][PubMed]
    [Google Scholar]
  28. Schwartz A. L., Ciechanover A..( 2009;). Targeting proteins for destruction by the ubiquitin system: implications for human pathobiology. Annu Rev Pharmacol Toxicol49:73–96 [CrossRef][PubMed]
    [Google Scholar]
  29. Shaw M. H., Reimer T., Kim Y.-G., Nuñez G..( 2008;). NOD-like receptors (NLRs): bona fide intracellular microbial sensors. Curr Opin Immunol20:377–382 [CrossRef][PubMed]
    [Google Scholar]
  30. Swidsinski A., Weber J., Loening-Baucke V., Hale L. P., Lochs H..( 2005;). Spatial organization and composition of the mucosal flora in patients with inflammatory bowel disease. J Clin Microbiol43:3380–3389 [CrossRef][PubMed]
    [Google Scholar]
  31. Tasaki T., Mulder L. C., Iwamatsu A., Lee M. J., Davydov I. V., Varshavsky A., Muesing M., Kwon Y. T..( 2005;). A family of mammalian E3 ubiquitin ligases that contain the UBR box motif and recognize N-degrons. Mol Cell Biol25:7120–7136 [CrossRef][PubMed]
    [Google Scholar]
  32. Van Tassell R. L., Wilkins T. D..( 1978;). Isolation of auxotrophs of Bacteroides fragilis. Can J Microbiol24:1619–1621 [CrossRef][PubMed]
    [Google Scholar]
  33. Vereecke L., Beyaert R., van Loo G..( 2009;). The ubiquitin-editing enzyme A20 (TNFAIP3) is a central regulator of immunopathology. Trends Immunol30:383–391 [CrossRef][PubMed]
    [Google Scholar]
  34. Xavier R. J., Podolsky D. K..( 2007;). Unravelling the pathogenesis of inflammatory bowel disease. Nature448:427–434 [CrossRef][PubMed]
    [Google Scholar]
  35. Zhang Y., Higashide W. M., McCormick B. A., Chen J., Zhou D..( 2006;). The inflammation-associated Salmonella SopA is a HECT-like E3 ubiquitin ligase. Mol Microbiol62:786–793 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.049940-0
Loading
/content/journal/micro/10.1099/mic.0.049940-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error