1887

Abstract

The Gram-negative pathogen strain M2 was found to exhibit a robust surface motility on low-percentage (0.2–0.4 %) agar plates. These patterns of motility were dramatically different depending on whether Difco or Eiken agar was used. Motility was observed in many, but not all, clinical and environmental isolates. The use of drop collapse assays to demonstrate surfactant production was unsuccessful, and the role of surfactants in M2 motility remains unclear. Surface motility was impaired by an insertion in , encoding a gene product that is often required for retraction of the type IV pilus. Motility was also dependent on quorum sensing, as a null allele in the autoinducer synthase decreased motility, and the addition of exogenous -(3-hydroxy)-dodecanoylhomoserine lactone (3-OH C-HSL) restored motility to the mutant. Transposon mutagenesis was used to identify additional genes required for motility and revealed loci encoding various functions: non-ribosomal synthesis of a putative lipopeptide, a sensor kinase (BfmS), a lytic transglycosylase, O-antigen biosynthesis (RmlB), an outer membrane porin (OmpA) and purine biosynthesis (PurK). Two of the above genes required for motility were highly activated by quorum sensing, and may explain, in part, the requirement for quorum sensing in motility.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.049791-0
2011-09-01
2020-01-21
Loading full text...

Full text loading...

/deliver/fulltext/micro/157/9/2534.html?itemId=/content/journal/micro/10.1099/mic.0.049791-0&mimeType=html&fmt=ahah

References

  1. Adams M. D., Goglin K., Molyneaux N., Hujer K. M., Lavender H., Jamison J. J., MacDonald I. J., Martin K. M., Russo T. et al.( 2008;). Comparative genome sequence analysis of multidrug-resistant Acinetobacter baumannii. J Bacteriol190:8053–8064 [CrossRef][PubMed]
    [Google Scholar]
  2. Barker J., Maxted H..( 1975;). Observations on the growth and movement of Acinetobacter on semi-solid media. J Med Microbiol8:443–446 [CrossRef][PubMed]
    [Google Scholar]
  3. Bergogne-Bérézin E., Towner K. J..( 1996;). Acinetobacter spp. as nosocomial pathogens: microbiological, clinical, and epidemiological features. Clin Microbiol Rev9:148–165[PubMed]
    [Google Scholar]
  4. Bouvet P. J., Grimont P. A..( 1987;). Identification and biotyping of clinical isolates of Acinetobacter. Ann Inst Pasteur Microbiol138:569–578 [CrossRef][PubMed]
    [Google Scholar]
  5. Choi C. H., Lee J. S., Lee Y. C., Park T. I., Lee J. C..( 2008a;). Acinetobacter baumannii invades epithelial cells and outer membrane protein A mediates interactions with epithelial cells. BMC Microbiol8:216 [CrossRef][PubMed]
    [Google Scholar]
  6. Choi C. H., Hyun S. H., Lee J. Y., Lee J. S., Lee Y. S., Kim S. A., Chae J. P., Yoo S. M., Lee J. C..( 2008b;). Acinetobacter baumannii outer membrane protein A targets the nucleus and induces cytotoxicity. Cell Microbiol10:309–319[PubMed]
    [Google Scholar]
  7. Farinha M. A., Kropinski A. M..( 1990;). Construction of broad-host-range plasmid vectors for easy visible selection and analysis of promoters. J Bacteriol172:3496–3499[PubMed]
    [Google Scholar]
  8. Gaddy J. A., Tomaras A. P., Actis L. A..( 2009;). The Acinetobacter baumannii 19606 OmpA protein plays a role in biofilm formation on abiotic surfaces and in the interaction of this pathogen with eukaryotic cells. Infect Immun77:3150–3160 [CrossRef][PubMed]
    [Google Scholar]
  9. Gribun A., Nitzan Y., Pechatnikov I., Hershkovits G., Katcoff D. J..( 2003;). Molecular and structural characterization of the HMP-AB gene encoding a pore-forming protein from a clinical isolate of Acinetobacter baumannii. Curr Microbiol47:434–443 [CrossRef][PubMed]
    [Google Scholar]
  10. Harshey R. M..( 2003;). Bacterial motility on a surface: many ways to a common goal. Annu Rev Microbiol57:249–273 [CrossRef][PubMed]
    [Google Scholar]
  11. Harshey R. M., Matsuyama T..( 1994;). Dimorphic transition in Escherichia coli and Salmonella typhimurium: surface-induced differentiation into hyperflagellate swarmer cells. Proc Natl Acad Sci U S A91:8631–8635 [CrossRef][PubMed]
    [Google Scholar]
  12. Henrichsen J..( 1972;). Bacterial surface translocation: a survey and a classification. Bacteriol Rev36:478–503[PubMed]
    [Google Scholar]
  13. Henrichsen J..( 1984;). Not gliding but twitching motility of Acinetobacter calcoaceticus. J Clin Pathol37:102–103 [CrossRef][PubMed]
    [Google Scholar]
  14. Herdendorf T. J., McCaslin D. R., Forest K. T..( 2002;). Aquifex aeolicus PilT, homologue of a surface motility protein, is a thermostable oligomeric NTPase. J Bacteriol184:6465–6471 [CrossRef][PubMed]
    [Google Scholar]
  15. Hunger M., Schmucker R., Kishan V., Hillen W..( 1990;). Analysis and nucleotide sequence of an origin of DNA replication in Acinetobacter calcoaceticus and its use for Escherichia coli shuttle plasmids. Gene87:45–51 [CrossRef][PubMed]
    [Google Scholar]
  16. Jain D. K., Collins-Thompson D. L., Lee H., Trevors J. T..( 1991;). A drop-collapsing test for screening surfactant-producing microorganisms. J Microbiol Methods13:271–279 [CrossRef]
    [Google Scholar]
  17. Jarrell K. F., McBride M. J..( 2008;). The surprisingly diverse ways that prokaryotes move. Nat Rev Microbiol6:466–476 [CrossRef][PubMed]
    [Google Scholar]
  18. Kaniga K., Delor I., Cornelis G. R..( 1991;). A wide-host-range suicide vector for improving reverse genetics in Gram-negative bacteria: inactivation of the blaA gene of Yersinia enterocolitica. Gene109:137–141 [CrossRef][PubMed]
    [Google Scholar]
  19. Martínez A., Torello S., Kolter R..( 1999;). Sliding motility in mycobacteria. J Bacteriol181:7331–7338[PubMed]
    [Google Scholar]
  20. Matsuyama T., Bhasin A., Harshey R. M..( 1995;). Mutational analysis of flagellum-independent surface spreading of Serratia marcescens 274 on a low-agar medium. J Bacteriol177:987–991[PubMed]
    [Google Scholar]
  21. Mattick J. S..( 2002;). Type IV pili and twitching motility. Annu Rev Microbiol56:289–314 [CrossRef][PubMed]
    [Google Scholar]
  22. McBride M. J..( 2010;). Shining a light on an opportunistic pathogen. J Bacteriol192:6325–6326 [CrossRef][PubMed]
    [Google Scholar]
  23. Merz A. J., So M., Sheetz M. P..( 2000;). Pilus retraction powers bacterial twitching motility. Nature407:98–102 [CrossRef][PubMed]
    [Google Scholar]
  24. Mussi M. A., Gaddy J. A., Cabruja M., Arivett B. A., Viale A. M., Rasia R., Actis L. A..( 2010;). The opportunistic human pathogen Acinetobacter baumannii senses and responds to light. J Bacteriol192:6336–6345 [CrossRef][PubMed]
    [Google Scholar]
  25. Niu C., Clemmer K. M., Bonomo R. A., Rather P. N..( 2008;). Isolation and characterization of an autoinducer synthase from Acinetobacter baumannii. J Bacteriol190:3386–3392 [CrossRef][PubMed]
    [Google Scholar]
  26. Rather P. N..( 2005;). Swarmer cell differentiation in Proteus mirabilis. Environ Microbiol7:1065–1073 [CrossRef][PubMed]
    [Google Scholar]
  27. Rosenberg M., Gutnick D., Rosenberg E..( 1980;). Adherence of bacteria to hydrocarbons: a simple method for measuring cell surface hydrophobicity. FEMS Microbiol Lett9:29–33 [CrossRef]
    [Google Scholar]
  28. Skerker J. M., Berg H. C..( 2001;). Direct observation of extension and retraction of type IV pili. Proc Natl Acad Sci U S A98:6901–6904 [CrossRef][PubMed]
    [Google Scholar]
  29. Smith M. G., Gianoulis T. A., Pukatzki S., Mekalanos J. J., Ornston L. N., Gerstein M., Snyder M..( 2007;). New insights into Acinetobacter baumannii pathogenesis revealed by high-density pyrosequencing and transposon mutagenesis. Genes Dev21:601–614 [CrossRef][PubMed]
    [Google Scholar]
  30. Stewart C. R., Rossier O., Cianciotto N. P..( 2009;). Surface translocation by Legionella pneumophila: a form of sliding motility that is dependent upon type II protein secretion. J Bacteriol191:1537–1546 [CrossRef][PubMed]
    [Google Scholar]
  31. Toguchi A., Siano M., Burkart M., Harshey R. M..( 2000;). Genetics of swarming motility in Salmonella enterica serovar Typhimurium: critical role for lipopolysaccharide. J Bacteriol182:6308–6321 [CrossRef][PubMed]
    [Google Scholar]
  32. Tomaras A. P., Dorsey C. W., Edelmann R. E., Actis L. A..( 2003;). Attachment to and biofilm formation on abiotic surfaces by Acinetobacter baumannii: involvement of a novel chaperone-usher pili assembly system. Microbiology149:3473–3484 [CrossRef][PubMed]
    [Google Scholar]
  33. Tomaras A. P., Flagler M. J., Dorsey C. W., Gaddy J. A., Actis L. A..( 2008;). Characterization of a two-component regulatory system from Acinetobacter baumannii that controls biofilm formation and cellular morphology. Microbiology154:3398–3409 [CrossRef][PubMed]
    [Google Scholar]
  34. Vollmer W., Joris B., Charlier P., Foster S..( 2008;). Bacterial peptidoglycan (murein) hydrolases. FEMS Microbiol Rev32:259–286 [CrossRef][PubMed]
    [Google Scholar]
  35. Wall D., Kaiser D..( 1999;). Type IV pili and cell motility. Mol Microbiol32:1–10 [CrossRef][PubMed]
    [Google Scholar]
  36. Walzer G., Rosenberg E., Ron E. Z..( 2006;). The Acinetobacter outer membrane protein A (OmpA) is a secreted emulsifier. Environ Microbiol8:1026–1032 [CrossRef][PubMed]
    [Google Scholar]
  37. Whiteley M., Lee K. M., Greenberg E. P..( 1999;). Identification of genes controlled by quorum sensing in Pseudomonas aeruginosa. Proc Natl Acad Sci U S A96:13904–13909 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.049791-0
Loading
/content/journal/micro/10.1099/mic.0.049791-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error