Skip to content
1887

Abstract

The virulence plasmid of the pathogenic actinomycete is essential for proliferation of this pathogen in macrophages and the development of disease. The pathogenicity island of this plasmid encodes a family of virulence-associated proteins (Vap), one of which (VapA) is a virulence factor. This paper describes the operon ( o-expressed ene), located upstream of the operon. Transcription of the operon gave rise to transcripts with a half-life similar to those determined for other virulence plasmid genes (1.8 min). Transcription started at a promoter similar to the promoter, and proceeded through an inefficient terminator into the downstream gene. In addition, is also transcribed from a promoter downstream of The and operons were coordinately regulated by temperature and pH in a synergistic manner. The latter parameter only affected transcription at higher growth temperatures, indicating that temperature is the dominant regulatory signal. Transcription of the operon increased 10-fold during the late exponential and stationary growth phases. Transcription was also upregulated during the initial hours following phagocytosis by phagocytic cells. In contrast to and , the gene is conserved in the porcine VapB-encoding plasmid, as well as in pathogenic mycobacteria. The coordinated regulation of and , transcription of following phagocytosis and conservation of in pathogenic mycobacteria indicate a role for and the genes in the virulence of .

Funding
This study was supported by the:
  • Research Stimulus Fund of the Department of Agriculture, Fisheries and Food (Award RSF 06-379)
  • Science Foundation Ireland (Award 02/IN.1/B203)
Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.049759-0
2011-08-01
2025-01-22
Loading full text...

Full text loading...

/deliver/fulltext/micro/157/8/2357.html?itemId=/content/journal/micro/10.1099/mic.0.049759-0&mimeType=html&fmt=ahah

References

  1. Butcher P. D., Mangan J. A., Monahan I. M. ( 1998). Intracellular gene expression. Analysis of RNA from mycobacteria in macrophages using RT-PCR. Methods Mol Biol 101:285–306[PubMed]
    [Google Scholar]
  2. Buttner M. J., Chater K. F., Bibb M. J. ( 1990). Cloning, disruption, and transcriptional analysis of three RNA polymerase sigma factor genes of Streptomyces coelicolor A3(2). J Bacteriol 172:3367–3378[PubMed]
    [Google Scholar]
  3. Byrne B. A., Prescott J. F., Palmer G. H., Takai S., Nicholson V. M., Alperin D. C., Hines S. A. ( 2001). Virulence plasmid of Rhodococcus equi contains inducible gene family encoding secreted proteins. Infect Immun 69:650–656 [View Article][PubMed]
    [Google Scholar]
  4. Byrne G. A., Russell D. A., Chen X., Meijer W. G. ( 2007). Transcriptional regulation of the virR operon of the intracellular pathogen Rhodococcus equi . J Bacteriol 189:5082–5089 [View Article][PubMed]
    [Google Scholar]
  5. Byrne G. A., Boland C. A., O’Connell E. P., Meijer W. G. ( 2008). Differential mRNA stability of the vapAICD operon of the facultative intracellular pathogen Rhodococcus equi . FEMS Microbiol Lett 280:89–94 [View Article][PubMed]
    [Google Scholar]
  6. Cole S. T., Brosch R., Parkhill J., Garnier T., Churcher C., Harris D., Gordon S. V., Eiglmeier K., Gas S. et al. ( 1998). Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequence. Nature 393:537–544 [View Article][PubMed]
    [Google Scholar]
  7. De La Peña-Moctezuma A., Prescott J. F., Goodfellow M. ( 1996). Attempts to find phenotypic markers of the virulence plasmid of Rhodococcus equi . Can J Vet Res 60:29–33[PubMed]
    [Google Scholar]
  8. Demangel C., Stinear T. P., Cole S. T. ( 2009). Buruli ulcer: reductive evolution enhances pathogenicity of Mycobacterium ulcerans . Nat Rev Microbiol 7:50–60 [View Article][PubMed]
    [Google Scholar]
  9. Devulder G., Pérouse de Montclos M., Flandrois J. P. ( 2005). A multigene approach to phylogenetic analysis using the genus Mycobacterium as a model. Int J Syst Evol Microbiol 55:293–302 [View Article][PubMed]
    [Google Scholar]
  10. Felsenstein J. ( 1989). phylip – phylogeny inference package (version 3.2). Cladistics 5:164–166
    [Google Scholar]
  11. Fernandez-Mora E., Polidori M., Lührmann A., Schaible U. E., Haas A. ( 2005). Maturation of Rhodococcus equi-containing vacuoles is arrested after completion of the early endosome stage. Traffic 6:635–653 [View Article][PubMed]
    [Google Scholar]
  12. Fleischmann R. D., Alland D., Eisen J. A., Carpenter L., White O., Peterson J., DeBoy R., Dodson R., Gwinn M. et al. ( 2002). Whole-genome comparison of Mycobacterium tuberculosis clinical and laboratory strains. J Bacteriol 184:5479–5490 [View Article][PubMed]
    [Google Scholar]
  13. Giguère S., Hondalus M. K., Yager J. A., Darrah P., Mosser D. M., Prescott J. F. ( 1999). Role of the 85-kilobase plasmid and plasmid-encoded virulence-associated protein A in intracellular survival and virulence of Rhodococcus equi . Infect Immun 67:3548–3557[PubMed]
    [Google Scholar]
  14. Hondalus M. K., Mosser D. M. ( 1994). Survival and replication of Rhodococcus equi in macrophages. Infect Immun 62:4167–4175[PubMed]
    [Google Scholar]
  15. Hondalus M. K., Diamond M. S., Rosenthal L. A., Springer T. A., Mosser D. M. ( 1993). The intracellular bacterium Rhodococcus equi requires Mac-1 to bind to mammalian cells. Infect Immun 61:2919–2929[PubMed]
    [Google Scholar]
  16. Hovel-Miner G., Pampou S., Faucher S. P., Clarke M., Morozova I., Morozov P., Russo J. J., Shuman H. A., Kalachikov S. ( 2009). σS controls multiple pathways associated with intracellular multiplication of Legionella pneumophila . J Bacteriol 191:2461–2473 [View Article][PubMed]
    [Google Scholar]
  17. Hughes K. L., Sulaiman I. ( 1987). The ecology of Rhodococcus equi and physicochemical influences on growth. Vet Microbiol 14:241–250 [View Article][PubMed]
    [Google Scholar]
  18. Iriarte M., Stainier I., Cornelis G. R. ( 1995). The rpoS gene from Yersinia enterocolitica and its influence on expression of virulence factors. Infect Immun 63:1840–1847[PubMed]
    [Google Scholar]
  19. Jain S., Bloom B. R., Hondalus M. K. ( 2003). Deletion of vapA encoding virulence associated protein A attenuates the intracellular actinomycete Rhodococcus equi . Mol Microbiol 50:115–128 [View Article][PubMed]
    [Google Scholar]
  20. Jones D. T., Taylor W. R., Thornton J. M. ( 1992). The rapid generation of mutation data matrices from protein sequences. Comput Appl Biosci 8:275–282[PubMed]
    [Google Scholar]
  21. Kang J. G., Hahn M. Y., Ishihama A., Roe J. H. ( 1997). Identification of sigma factors for growth phase-related promoter selectivity of RNA polymerases from Streptomyces coelicolor A3(2). Nucleic Acids Res 25:2566–2573 [View Article][PubMed]
    [Google Scholar]
  22. Kelly B. G., Wall D. M., Boland C. A., Meijer W. G. ( 2002). Isocitrate lyase of the facultative intracellular pathogen Rhodococcus equi . Microbiology 148:793–798[PubMed]
    [Google Scholar]
  23. Klinkert B., Narberhaus F. ( 2009). Microbial thermosensors. Cell Mol Life Sci 66:2661–2676 [View Article][PubMed]
    [Google Scholar]
  24. Larkin M. A., Blackshields G., Brown N. P., Chenna R., McGettigan P. A., McWilliam H., Valentin F., Wallace I. M., Wilm A. et al. ( 2007). clustal_w and clustal_x version 2.0. Bioinformatics 23:2947–2948 [View Article][PubMed]
    [Google Scholar]
  25. Letek M., Ocampo-Sosa A. A., Sanders M., Fogarty U., Buckley T., Leadon D. P., González P., Scortti M., Meijer W. G. et al. ( 2008). Evolution of the Rhodococcus equi vap pathogenicity island seen through comparison of host-associated vapA and vapB virulence plasmids. J Bacteriol 190:5797–5805 [View Article][PubMed]
    [Google Scholar]
  26. Letek M., González P., Macarthur I., Rodríguez H., Freeman T. C., Valero-Rello A., Blanco M., Buckley T., Cherevach I. et al. ( 2010). The genome of a pathogenic Rhodococcus: cooptive virulence underpinned by key gene acquisitions. PLoS Genet 6:e1001145 [View Article][PubMed]
    [Google Scholar]
  27. Li L., Bannantine J. P., Zhang Q., Amonsin A., May B. J., Alt D., Banerji N., Kanjilal S., Kapur V. ( 2005). The complete genome sequence of Mycobacterium avium subspecies paratuberculosis . Proc Natl Acad Sci U S A 102:12344–12349 [View Article][PubMed]
    [Google Scholar]
  28. Lührmann A., Mauder N., Sydor T., Fernandez-Mora E., Schulze-Luehrmann J., Takai S., Haas A. ( 2004). Necrotic death of Rhodococcus equi-infected macrophages is regulated by virulence-associated plasmids. Infect Immun 72:853–862 [View Article][PubMed]
    [Google Scholar]
  29. Meijer W. G., Prescott J. F. ( 2004). Rhodococcus equi . Vet Res 35:383–396 [View Article][PubMed]
    [Google Scholar]
  30. Miranda-CasoLuengo R., Duffy P. S., O’Connell E. P., Graham B. J., Mangan M. W., Prescott J. F., Meijer W. G. ( 2005). The iron-regulated iupABC operon is required for saprophytic growth of the intracellular pathogen Rhodococcus equi at low iron concentrations. J Bacteriol 187:3438–3444 [View Article][PubMed]
    [Google Scholar]
  31. Muscatello G., Leadon D. P., Klayt M., Ocampo-Sosa A., Lewis D. A., Fogarty U., Buckley T., Gilkerson J. R., Meijer W. G., Vazquez-Boland J. A. ( 2007). Rhodococcus equi infection in foals: the science of ‘rattles’. Equine Vet J 39:470–478 [View Article][PubMed]
    [Google Scholar]
  32. Nielsen A. T., Dolganov N. A., Otto G., Miller M. C., Wu C. Y., Schoolnik G. K. ( 2006). RpoS controls the Vibrio cholerae mucosal escape response. PLoS Pathog 2:e109 [View Article][PubMed]
    [Google Scholar]
  33. Ocampo-Sosa A. A., Lewis D. A., Navas J., Quigley F., Callejo R., Scortti M., Leadon D. P., Fogarty U., Vázquez-Boland J. A. ( 2007). Molecular epidemiology of Rhodococcus equi based on traA, vapA, and vapB virulence plasmid markers. J Infect Dis 196:763–769 [View Article][PubMed]
    [Google Scholar]
  34. Pfaffl M. W. ( 2004). Quantification strategies in real-time PCR. A–Z of Quantitative PCR87–112 Bustin S. A. La Jolla, CA: International University Line;
    [Google Scholar]
  35. Platt T. ( 1986). Transcription termination and the regulation of gene expression. Annu Rev Biochem 55:339–372 [View Article][PubMed]
    [Google Scholar]
  36. Polidori M., Haas A. ( 2006). VapI, a new member of the Rhodococcus equi Vap family. Antonie van Leeuwenhoek 90:299–304 [View Article][PubMed]
    [Google Scholar]
  37. Ren J., Prescott J. F. ( 2003). Analysis of virulence plasmid gene expression of intra-macrophage and in vitro grown Rhodococcus equi ATCC 33701. Vet Microbiol 94:167–182 [View Article][PubMed]
    [Google Scholar]
  38. Ren J., Prescott J. F. ( 2004). The effect of mutation on Rhodococcus equi virulence plasmid gene expression and mouse virulence. Vet Microbiol 103:219–230 [View Article][PubMed]
    [Google Scholar]
  39. Ripoll F., Pasek S., Schenowitz C., Dossat C., Barbe V., Rottman M., Macheras E., Heym B., Herrmann J. L. et al. ( 2009). Non mycobacterial virulence genes in the genome of the emerging pathogen Mycobacterium abscessus . PLoS ONE 4:e5660 [View Article][PubMed]
    [Google Scholar]
  40. Rohde K. H., Abramovitch R. B., Russell D. G. ( 2007). Mycobacterium tuberculosis invasion of macrophages: linking bacterial gene expression to environmental cues. Cell Host Microbe 2:352–364 [View Article][PubMed]
    [Google Scholar]
  41. Russell D. A., Byrne G. A., O’Connell E. P., Boland C. A., Meijer W. G. ( 2004). The LysR-type transcriptional regulator VirR is required for expression of the virulence gene vapA of Rhodococcus equi ATCC 33701. J Bacteriol 186:5576–5584 [View Article][PubMed]
    [Google Scholar]
  42. Sambrook J., Russell D. W. ( 2001). Molecular Cloning: a Laboratory Manual Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  43. Sekine M., Tanikawa S., Omata S., Saito M., Fujisawa T., Tsukatani N., Tajima T., Sekigawa T., Kosugi H. et al. ( 2006). Sequence analysis of three plasmids harboured in Rhodococcus erythropolis strain PR4. Environ Microbiol 8:334–346 [View Article][PubMed]
    [Google Scholar]
  44. Stinear T. P., Seemann T., Pidot S., Frigui W., Reysset G., Garnier T., Meurice G., Simon D., Bouchier C. et al. ( 2007). Reductive evolution and niche adaptation inferred from the genome of Mycobacterium ulcerans, the causative agent of Buruli ulcer. Genome Res 17:192–200 [View Article][PubMed]
    [Google Scholar]
  45. Stinear T. P., Seemann T., Harrison P. F., Jenkin G. A., Davies J. K., Johnson P. D., Abdellah Z., Arrowsmith C., Chillingworth T. et al. ( 2008). Insights from the complete genome sequence of Mycobacterium marinum on the evolution of Mycobacterium tuberculosis . Genome Res 18:729–741 [View Article][PubMed]
    [Google Scholar]
  46. Takai S., Fukunaga N., Kamisawa K., Imai Y., Sasaki Y., Tsubaki S. ( 1996). Expression of virulence-associated antigens of Rhodococcus equi is regulated by temperature and pH. Microbiol Immunol 40:591–594[PubMed] [CrossRef]
    [Google Scholar]
  47. Takai S., Hines S. A., Sekizaki T., Nicholson V. M., Alperin D. A., Osaki M., Takamatsu D., Nakamura M., Suzuki K. et al. ( 2000). DNA sequence and comparison of virulence plasmids from Rhodococcus equi ATCC 33701 and 103. Infect Immun 68:6840–6847 [View Article][PubMed]
    [Google Scholar]
  48. Toyooka K., Takai S., Kirikae T. ( 2005). Rhodococcus equi can survive a phagolysosomal environment in macrophages by suppressing acidification of the phagolysosome. J Med Microbiol 54:1007–1015 [View Article][PubMed]
    [Google Scholar]
  49. von Bargen K., Wohlmann J., Taylor G. A., Utermöhlen O., Haas A. ( 2011). Nitric oxide-mediated intracellular growth restriction of pathogenic Rhodococcus equi can be prevented by iron. Infect Immun 79:2098–2111 [View Article][PubMed]
    [Google Scholar]
/content/journal/micro/10.1099/mic.0.049759-0
Loading
/content/journal/micro/10.1099/mic.0.049759-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF

Supplementary material 2

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error