1887

Abstract

The virulence plasmid of the pathogenic actinomycete is essential for proliferation of this pathogen in macrophages and the development of disease. The pathogenicity island of this plasmid encodes a family of virulence-associated proteins (Vap), one of which (VapA) is a virulence factor. This paper describes the operon ( o-expressed ene), located upstream of the operon. Transcription of the operon gave rise to transcripts with a half-life similar to those determined for other virulence plasmid genes (1.8 min). Transcription started at a promoter similar to the promoter, and proceeded through an inefficient terminator into the downstream gene. In addition, is also transcribed from a promoter downstream of The and operons were coordinately regulated by temperature and pH in a synergistic manner. The latter parameter only affected transcription at higher growth temperatures, indicating that temperature is the dominant regulatory signal. Transcription of the operon increased 10-fold during the late exponential and stationary growth phases. Transcription was also upregulated during the initial hours following phagocytosis by phagocytic cells. In contrast to and , the gene is conserved in the porcine VapB-encoding plasmid, as well as in pathogenic mycobacteria. The coordinated regulation of and , transcription of following phagocytosis and conservation of in pathogenic mycobacteria indicate a role for and the genes in the virulence of .

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.049759-0
2011-08-01
2020-09-20
Loading full text...

Full text loading...

/deliver/fulltext/micro/157/8/2357.html?itemId=/content/journal/micro/10.1099/mic.0.049759-0&mimeType=html&fmt=ahah

References

  1. Butcher P. D., Mangan J. A., Monahan I. M.. ( 1998;). Intracellular gene expression. Analysis of RNA from mycobacteria in macrophages using RT-PCR. Methods Mol Biol101:285–306[PubMed]
    [Google Scholar]
  2. Buttner M. J., Chater K. F., Bibb M. J.. ( 1990;). Cloning, disruption, and transcriptional analysis of three RNA polymerase sigma factor genes of Streptomyces coelicolor A3(2). J Bacteriol172:3367–3378[PubMed]
    [Google Scholar]
  3. Byrne B. A., Prescott J. F., Palmer G. H., Takai S., Nicholson V. M., Alperin D. C., Hines S. A.. ( 2001;). Virulence plasmid of Rhodococcus equi contains inducible gene family encoding secreted proteins. Infect Immun69:650–656 [CrossRef][PubMed]
    [Google Scholar]
  4. Byrne G. A., Russell D. A., Chen X., Meijer W. G.. ( 2007;). Transcriptional regulation of the virR operon of the intracellular pathogen Rhodococcus equi . J Bacteriol189:5082–5089 [CrossRef][PubMed]
    [Google Scholar]
  5. Byrne G. A., Boland C. A., O’Connell E. P., Meijer W. G.. ( 2008;). Differential mRNA stability of the vapAICD operon of the facultative intracellular pathogen Rhodococcus equi . FEMS Microbiol Lett280:89–94 [CrossRef][PubMed]
    [Google Scholar]
  6. Cole S. T., Brosch R., Parkhill J., Garnier T., Churcher C., Harris D., Gordon S. V., Eiglmeier K., Gas S. et al. ( 1998;). Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequence. Nature393:537–544 [CrossRef][PubMed]
    [Google Scholar]
  7. De La Peña-Moctezuma A., Prescott J. F., Goodfellow M.. ( 1996;). Attempts to find phenotypic markers of the virulence plasmid of Rhodococcus equi . Can J Vet Res60:29–33[PubMed]
    [Google Scholar]
  8. Demangel C., Stinear T. P., Cole S. T.. ( 2009;). Buruli ulcer: reductive evolution enhances pathogenicity of Mycobacterium ulcerans . Nat Rev Microbiol7:50–60 [CrossRef][PubMed]
    [Google Scholar]
  9. Devulder G., Pérouse de Montclos M., Flandrois J. P.. ( 2005;). A multigene approach to phylogenetic analysis using the genus Mycobacterium as a model. Int J Syst Evol Microbiol55:293–302 [CrossRef][PubMed]
    [Google Scholar]
  10. Felsenstein J.. ( 1989;). phylip – phylogeny inference package (version 3.2). Cladistics5:164–166
    [Google Scholar]
  11. Fernandez-Mora E., Polidori M., Lührmann A., Schaible U. E., Haas A.. ( 2005;). Maturation of Rhodococcus equi-containing vacuoles is arrested after completion of the early endosome stage. Traffic6:635–653 [CrossRef][PubMed]
    [Google Scholar]
  12. Fleischmann R. D., Alland D., Eisen J. A., Carpenter L., White O., Peterson J., DeBoy R., Dodson R., Gwinn M. et al. ( 2002;). Whole-genome comparison of Mycobacterium tuberculosis clinical and laboratory strains. J Bacteriol184:5479–5490 [CrossRef][PubMed]
    [Google Scholar]
  13. Giguère S., Hondalus M. K., Yager J. A., Darrah P., Mosser D. M., Prescott J. F.. ( 1999;). Role of the 85-kilobase plasmid and plasmid-encoded virulence-associated protein A in intracellular survival and virulence of Rhodococcus equi . Infect Immun67:3548–3557[PubMed]
    [Google Scholar]
  14. Hondalus M. K., Mosser D. M.. ( 1994;). Survival and replication of Rhodococcus equi in macrophages. Infect Immun62:4167–4175[PubMed]
    [Google Scholar]
  15. Hondalus M. K., Diamond M. S., Rosenthal L. A., Springer T. A., Mosser D. M.. ( 1993;). The intracellular bacterium Rhodococcus equi requires Mac-1 to bind to mammalian cells. Infect Immun61:2919–2929[PubMed]
    [Google Scholar]
  16. Hovel-Miner G., Pampou S., Faucher S. P., Clarke M., Morozova I., Morozov P., Russo J. J., Shuman H. A., Kalachikov S.. ( 2009;). σS controls multiple pathways associated with intracellular multiplication of Legionella pneumophila . J Bacteriol191:2461–2473 [CrossRef][PubMed]
    [Google Scholar]
  17. Hughes K. L., Sulaiman I.. ( 1987;). The ecology of Rhodococcus equi and physicochemical influences on growth. Vet Microbiol14:241–250 [CrossRef][PubMed]
    [Google Scholar]
  18. Iriarte M., Stainier I., Cornelis G. R.. ( 1995;). The rpoS gene from Yersinia enterocolitica and its influence on expression of virulence factors. Infect Immun63:1840–1847[PubMed]
    [Google Scholar]
  19. Jain S., Bloom B. R., Hondalus M. K.. ( 2003;). Deletion of vapA encoding virulence associated protein A attenuates the intracellular actinomycete Rhodococcus equi . Mol Microbiol50:115–128 [CrossRef][PubMed]
    [Google Scholar]
  20. Jones D. T., Taylor W. R., Thornton J. M.. ( 1992;). The rapid generation of mutation data matrices from protein sequences. Comput Appl Biosci8:275–282[PubMed]
    [Google Scholar]
  21. Kang J. G., Hahn M. Y., Ishihama A., Roe J. H.. ( 1997;). Identification of sigma factors for growth phase-related promoter selectivity of RNA polymerases from Streptomyces coelicolor A3(2). Nucleic Acids Res25:2566–2573 [CrossRef][PubMed]
    [Google Scholar]
  22. Kelly B. G., Wall D. M., Boland C. A., Meijer W. G.. ( 2002;). Isocitrate lyase of the facultative intracellular pathogen Rhodococcus equi . Microbiology148:793–798[PubMed]
    [Google Scholar]
  23. Klinkert B., Narberhaus F.. ( 2009;). Microbial thermosensors. Cell Mol Life Sci66:2661–2676 [CrossRef][PubMed]
    [Google Scholar]
  24. Larkin M. A., Blackshields G., Brown N. P., Chenna R., McGettigan P. A., McWilliam H., Valentin F., Wallace I. M., Wilm A. et al. ( 2007;). clustal_w and clustal_x version 2.0. Bioinformatics23:2947–2948 [CrossRef][PubMed]
    [Google Scholar]
  25. Letek M., Ocampo-Sosa A. A., Sanders M., Fogarty U., Buckley T., Leadon D. P., González P., Scortti M., Meijer W. G. et al. ( 2008;). Evolution of the Rhodococcus equi vap pathogenicity island seen through comparison of host-associated vapA and vapB virulence plasmids. J Bacteriol190:5797–5805 [CrossRef][PubMed]
    [Google Scholar]
  26. Letek M., González P., Macarthur I., Rodríguez H., Freeman T. C., Valero-Rello A., Blanco M., Buckley T., Cherevach I. et al. ( 2010;). The genome of a pathogenic Rhodococcus: cooptive virulence underpinned by key gene acquisitions. PLoS Genet6:e1001145 [CrossRef][PubMed]
    [Google Scholar]
  27. Li L., Bannantine J. P., Zhang Q., Amonsin A., May B. J., Alt D., Banerji N., Kanjilal S., Kapur V.. ( 2005;). The complete genome sequence of Mycobacterium avium subspecies paratuberculosis . Proc Natl Acad Sci U S A102:12344–12349 [CrossRef][PubMed]
    [Google Scholar]
  28. Lührmann A., Mauder N., Sydor T., Fernandez-Mora E., Schulze-Luehrmann J., Takai S., Haas A.. ( 2004;). Necrotic death of Rhodococcus equi-infected macrophages is regulated by virulence-associated plasmids. Infect Immun72:853–862 [CrossRef][PubMed]
    [Google Scholar]
  29. Meijer W. G., Prescott J. F.. ( 2004;). Rhodococcus equi . Vet Res35:383–396 [CrossRef][PubMed]
    [Google Scholar]
  30. Miranda-CasoLuengo R., Duffy P. S., O’Connell E. P., Graham B. J., Mangan M. W., Prescott J. F., Meijer W. G.. ( 2005;). The iron-regulated iupABC operon is required for saprophytic growth of the intracellular pathogen Rhodococcus equi at low iron concentrations. J Bacteriol187:3438–3444 [CrossRef][PubMed]
    [Google Scholar]
  31. Muscatello G., Leadon D. P., Klayt M., Ocampo-Sosa A., Lewis D. A., Fogarty U., Buckley T., Gilkerson J. R., Meijer W. G., Vazquez-Boland J. A.. ( 2007;). Rhodococcus equi infection in foals: the science of ‘rattles’. Equine Vet J39:470–478 [CrossRef][PubMed]
    [Google Scholar]
  32. Nielsen A. T., Dolganov N. A., Otto G., Miller M. C., Wu C. Y., Schoolnik G. K.. ( 2006;). RpoS controls the Vibrio cholerae mucosal escape response. PLoS Pathog2:e109 [CrossRef][PubMed]
    [Google Scholar]
  33. Ocampo-Sosa A. A., Lewis D. A., Navas J., Quigley F., Callejo R., Scortti M., Leadon D. P., Fogarty U., Vázquez-Boland J. A.. ( 2007;). Molecular epidemiology of Rhodococcus equi based on traA, vapA, and vapB virulence plasmid markers. J Infect Dis196:763–769 [CrossRef][PubMed]
    [Google Scholar]
  34. Pfaffl M. W.. ( 2004;). Quantification strategies in real-time PCR. A–Z of Quantitative PCR87–112 Bustin S. A.. La Jolla, CA: International University Line;
    [Google Scholar]
  35. Platt T.. ( 1986;). Transcription termination and the regulation of gene expression. Annu Rev Biochem55:339–372 [CrossRef][PubMed]
    [Google Scholar]
  36. Polidori M., Haas A.. ( 2006;). VapI, a new member of the Rhodococcus equi Vap family. Antonie van Leeuwenhoek90:299–304 [CrossRef][PubMed]
    [Google Scholar]
  37. Ren J., Prescott J. F.. ( 2003;). Analysis of virulence plasmid gene expression of intra-macrophage and in vitro grown Rhodococcus equi ATCC 33701. Vet Microbiol94:167–182 [CrossRef][PubMed]
    [Google Scholar]
  38. Ren J., Prescott J. F.. ( 2004;). The effect of mutation on Rhodococcus equi virulence plasmid gene expression and mouse virulence. Vet Microbiol103:219–230 [CrossRef][PubMed]
    [Google Scholar]
  39. Ripoll F., Pasek S., Schenowitz C., Dossat C., Barbe V., Rottman M., Macheras E., Heym B., Herrmann J. L. et al. ( 2009;). Non mycobacterial virulence genes in the genome of the emerging pathogen Mycobacterium abscessus . PLoS ONE4:e5660 [CrossRef][PubMed]
    [Google Scholar]
  40. Rohde K. H., Abramovitch R. B., Russell D. G.. ( 2007;). Mycobacterium tuberculosis invasion of macrophages: linking bacterial gene expression to environmental cues. Cell Host Microbe2:352–364 [CrossRef][PubMed]
    [Google Scholar]
  41. Russell D. A., Byrne G. A., O’Connell E. P., Boland C. A., Meijer W. G.. ( 2004;). The LysR-type transcriptional regulator VirR is required for expression of the virulence gene vapA of Rhodococcus equi ATCC 33701. J Bacteriol186:5576–5584 [CrossRef][PubMed]
    [Google Scholar]
  42. Sambrook J., Russell D. W.. ( 2001;). Molecular Cloning: a Laboratory Manual Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  43. Sekine M., Tanikawa S., Omata S., Saito M., Fujisawa T., Tsukatani N., Tajima T., Sekigawa T., Kosugi H. et al. ( 2006;). Sequence analysis of three plasmids harboured in Rhodococcus erythropolis strain PR4. Environ Microbiol8:334–346 [CrossRef][PubMed]
    [Google Scholar]
  44. Stinear T. P., Seemann T., Pidot S., Frigui W., Reysset G., Garnier T., Meurice G., Simon D., Bouchier C. et al. ( 2007;). Reductive evolution and niche adaptation inferred from the genome of Mycobacterium ulcerans, the causative agent of Buruli ulcer. Genome Res17:192–200 [CrossRef][PubMed]
    [Google Scholar]
  45. Stinear T. P., Seemann T., Harrison P. F., Jenkin G. A., Davies J. K., Johnson P. D., Abdellah Z., Arrowsmith C., Chillingworth T. et al. ( 2008;). Insights from the complete genome sequence of Mycobacterium marinum on the evolution of Mycobacterium tuberculosis . Genome Res18:729–741 [CrossRef][PubMed]
    [Google Scholar]
  46. Takai S., Fukunaga N., Kamisawa K., Imai Y., Sasaki Y., Tsubaki S.. ( 1996;). Expression of virulence-associated antigens of Rhodococcus equi is regulated by temperature and pH. Microbiol Immunol40:591–594[PubMed][CrossRef]
    [Google Scholar]
  47. Takai S., Hines S. A., Sekizaki T., Nicholson V. M., Alperin D. A., Osaki M., Takamatsu D., Nakamura M., Suzuki K. et al. ( 2000;). DNA sequence and comparison of virulence plasmids from Rhodococcus equi ATCC 33701 and 103. Infect Immun68:6840–6847 [CrossRef][PubMed]
    [Google Scholar]
  48. Toyooka K., Takai S., Kirikae T.. ( 2005;). Rhodococcus equi can survive a phagolysosomal environment in macrophages by suppressing acidification of the phagolysosome. J Med Microbiol54:1007–1015 [CrossRef][PubMed]
    [Google Scholar]
  49. von Bargen K., Wohlmann J., Taylor G. A., Utermöhlen O., Haas A.. ( 2011;). Nitric oxide-mediated intracellular growth restriction of pathogenic Rhodococcus equi can be prevented by iron. Infect Immun79:2098–2111 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.049759-0
Loading
/content/journal/micro/10.1099/mic.0.049759-0
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error