1887

Abstract

possesses 16 two-component systems (TCSs), two of which (GraRS and NsaRS) belong to the intramembrane-sensing histidine kinase (IM-HK) family, which is conserved within the firmicutes. NsaRS has recently been documented as being important for nisin resistance in . In this study, we present a characterization of NsaRS and reveal that, as with other IM-HK TCSs, it responds to disruptions in the cell envelope. Analysis using a reporter–gene fusion demonstrated that expression is upregulated by a variety of cell-envelope-damaging antibiotics, including phosphomycin, ampicillin, nisin, gramicidin, carbonyl cyanide -chlorophenylhydrazone and penicillin G. Additionally, we reveal that NsaRS regulates a downstream transporter NsaAB during nisin-induced stress. mutants also display a 200-fold decreased ability to develop resistance to the cell-wall-targeting antibiotic bacitracin. Microarray analysis reveals that the transcription of 245 genes is altered in an mutant, with the vast majority being downregulated. Included within this list are genes involved in transport, drug resistance, cell envelope synthesis, transcriptional regulation, amino acid metabolism and virulence. Using inductively coupled plasma-MS we observed a decrease in intracellular divalent metal ions in an mutant when grown under low abundance conditions. Characterization of cells using electron microscopy reveals that mutants have alterations in cell envelope structure. Finally, a variety of virulence-related phenotypes are impaired in mutants, including biofilm formation, resistance to killing by human macrophages and survival in whole human blood. Thus, NsaRS is important in sensing cell damage in and functions to reprogram gene expression to modify cell envelope architecture, facilitating adaptation and survival.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.049692-0
2011-08-01
2020-09-19
Loading full text...

Full text loading...

/deliver/fulltext/micro/157/8/2206.html?itemId=/content/journal/micro/10.1099/mic.0.049692-0&mimeType=html&fmt=ahah

References

  1. Beenken K. E., Blevins J. S., Smeltzer M. S.. ( 2003;). Mutation of sarA in Staphylococcus aureus limits biofilm formation. Infect Immun71:4206–4211 [CrossRef][PubMed]
    [Google Scholar]
  2. Beenken K. E., Dunman P. M., McAleese F., Macapagal D., Murphy E., Projan S. J., Blevins J. S., Smeltzer M. S.. ( 2004;). Global gene expression in Staphylococcus aureus biofilms. J Bacteriol186:4665–4684 [CrossRef][PubMed]
    [Google Scholar]
  3. Beenken K. E., Mrak L. N., Griffin L. M., Zielinska A. K., Shaw L. N., Rice K. C., Horswill A. R., Bayles K. W., Smeltzer M. S.. ( 2010;). Epistatic relationships between sarA and agr in Staphylococcus aureus biofilm formation. PLoS ONE5:e10790 [CrossRef][PubMed]
    [Google Scholar]
  4. Blake K. L., Randall C. P., O’Neill A. J.. ( 2011;). In vitro studies indicate a high resistance potential for the lantibiotic nisin in Staphylococcus aureus and define a genetic basis for nisin resistance. Antimicrob Agents Chemother55:2362–2368 [CrossRef][PubMed]
    [Google Scholar]
  5. Boles B. R., Horswill A. R.. ( 2008;). Agr-mediated dispersal of Staphylococcus aureus biofilms. PLoS Pathog4:e1000052 [CrossRef][PubMed]
    [Google Scholar]
  6. Boles B. R., Thoendel M., Roth A. J., Horswill A. R.. ( 2010;). Identification of genes involved in polysaccharide-independent Staphylococcus aureus biofilm formation. PLoS ONE5:e10146 [CrossRef][PubMed]
    [Google Scholar]
  7. Brunskill E. W., Bayles K. W.. ( 1996;). Identification and molecular characterization of a putative regulatory locus that affects autolysis in Staphylococcus aureus . J Bacteriol178:611–618[PubMed]
    [Google Scholar]
  8. Cao M., Wang T., Ye R., Helmann J. D.. ( 2002;). Antibiotics that inhibit cell wall biosynthesis induce expression of the Bacillus subtilis σW and σM regulons. Mol Microbiol45:1267–1276 [CrossRef][PubMed]
    [Google Scholar]
  9. Cheung A. L., Koomey J. M., Butler C. A., Projan S. J., Fischetti V. A.. ( 1992;). Regulation of exoprotein expression in Staphylococcus aureus by a locus (sar) distinct from agr . Proc Natl Acad Sci U S A89:6462–6466 [CrossRef][PubMed]
    [Google Scholar]
  10. Cheung G. Y., Rigby K., Wang R., Queck S. Y., Braughton K. R., Whitney A. R., Teintze M., DeLeo F. R., Otto M.. ( 2010;). Staphylococcus epidermidis strategies to avoid killing by human neutrophils. PLoS Pathog6:e1001133 [CrossRef][PubMed]
    [Google Scholar]
  11. Corrigan R. M., Rigby D., Handley P., Foster T. J.. ( 2007;). The role of Staphylococcus aureus surface protein SasG in adherence and biofilm formation. Microbiology153:2435–2446 [CrossRef][PubMed]
    [Google Scholar]
  12. de Kruijff B., van Dam V., Breukink E.. ( 2008;). Lipid II: a central component in bacterial cell wall synthesis and a target for antibiotics. Prostaglandins Leukot Essent Fatty Acids79:117–121 [CrossRef][PubMed]
    [Google Scholar]
  13. Delaune A., Poupel O., Mallet A., Coic Y. M., Msadek T., Dubrac S.. ( 2011;). Peptidoglycan crosslinking relaxation plays an important role in Staphylococcus aureus WalKR-dependent cell viability. PLoS ONE6:e17054 [CrossRef][PubMed]
    [Google Scholar]
  14. Delgado A., Zaman S., Muthaiyan A., Nagarajan V., Elasri M. O., Wilkinson B. J., Gustafson J. E.. ( 2008;). The fusidic acid stimulon of Staphylococcus aureus . J Antimicrob Chemother62:1207–1214 [CrossRef][PubMed]
    [Google Scholar]
  15. Fournier B., Klier A., Rapoport G.. ( 2001;). The two-component system ArlS–ArlR is a regulator of virulence gene expression in Staphylococcus aureus . Mol Microbiol41:247–261 [CrossRef][PubMed]
    [Google Scholar]
  16. Fuchs S., Pané-Farré J., Kohler C., Hecker M., Engelmann S.. ( 2007;). Anaerobic gene expression in Staphylococcus aureus . J Bacteriol189:4275–4289 [CrossRef][PubMed]
    [Google Scholar]
  17. Gardete S., Wu S. W., Gill S., Tomasz A.. ( 2006;). Role of VraSR in antibiotic resistance and antibiotic-induced stress response in Staphylococcus aureus . Antimicrob Agents Chemother50:3424–3434 [CrossRef][PubMed]
    [Google Scholar]
  18. Giraudo A. T., Raspanti C. G., Calzolari A., Nagel R.. ( 1994;). Characterization of a Tn551-mutant of Staphylococcus aureus defective in the production of several exoproteins. Can J Microbiol40:677–681 [CrossRef][PubMed]
    [Google Scholar]
  19. Hasper H. E., Kramer N. E., Smith J. L., Hillman J. D., Zachariah C., Kuipers O. P., de Kruijff B., Breukink E.. ( 2006;). An alternative bactericidal mechanism of action for lantibiotic peptides that target lipid II. Science313:1636–1637 [CrossRef][PubMed]
    [Google Scholar]
  20. Herbert S., Bera A., Nerz C., Kraus D., Peschel A., Goerke C., Meehl M., Cheung A., Götz F.. ( 2007;). Molecular basis of resistance to muramidase and cationic antimicrobial peptide activity of lysozyme in staphylococci. PLoS Pathog3:e102 [CrossRef][PubMed]
    [Google Scholar]
  21. Highlander S. K., Hultén K. G., Qin X., Jiang H., Yerrapragada S., Mason E. O. Jr, Shang Y., Williams T. M., Fortunov R. M. et al. ( 2007;). Subtle genetic changes enhance virulence of methicillin resistant and sensitive Staphylococcus aureus . BMC Microbiol7:99 [CrossRef][PubMed]
    [Google Scholar]
  22. Horsburgh M. J., Clements M. O., Crossley H., Ingham E., Foster S. J.. ( 2001a;). PerR controls oxidative stress resistance and iron storage proteins and is required for virulence in Staphylococcus aureus . Infect Immun69:3744–3754 [CrossRef][PubMed]
    [Google Scholar]
  23. Horsburgh M. J., Ingham E., Foster S. J.. ( 2001b;). In Staphylococcus aureus, fur is an interactive regulator with PerR, contributes to virulence, and is necessary for oxidative stress resistance through positive regulation of catalase and iron homeostasis. J Bacteriol183:468–475 [CrossRef][PubMed]
    [Google Scholar]
  24. Horsburgh M. J., Aish J. L., White I. J., Shaw L., Lithgow J. K., Foster S. J.. ( 2002;). σB modulates virulence determinant expression and stress resistance: characterization of a functional rsbU strain derived from Staphylococcus aureus 8325-4. J Bacteriol184:5457–5467 [CrossRef][PubMed]
    [Google Scholar]
  25. Hyde A. J., Parisot J., McNichol A., Bonev B. B.. ( 2006;). Nisin-induced changes in Bacillus morphology suggest a paradigm of antibiotic action. Proc Natl Acad Sci U S A103:19896–19901 [CrossRef][PubMed]
    [Google Scholar]
  26. Joseph P., Fichant G. &, Quentin Y., Denizot F.. ( 2002;). Regulatory relationship of two-component and ABC transport systems and clustering of their genes in the Bacillus/Clostridium group, suggest a functional link between them. J Mol Microbiol Biotechnol4:503–513[PubMed]
    [Google Scholar]
  27. Kemp E. H., Sammons R. L., Moir A., Sun D., Setlow P.. ( 1991;). Analysis of transcriptional control of the gerD spore germination gene of Bacillus subtilis 168. J Bacteriol173:4646–4652
    [Google Scholar]
  28. Koprivnjak T., Mlakar V., Swanson L., Fournier B., Peschel A., Weiss J. P.. ( 2006;). Cation-induced transcriptional regulation of the dlt operon of Staphylococcus aureus . J Bacteriol188:3622–3630 [CrossRef][PubMed]
    [Google Scholar]
  29. Koziel J., Maciag-Gudowska A., Mikolajczyk T., Bzowska M., Sturdevant D. E., Whitney A. R., Shaw L. N., DeLeo F. R., Potempa J.. ( 2009;). Phagocytosis of Staphylococcus aureus by macrophages exerts cytoprotective effects manifested by the upregulation of antiapoptotic factors. PLoS ONE4:e5210 [CrossRef][PubMed]
    [Google Scholar]
  30. Kraus D., Herbert S., Kristian S. A., Khosravi A., Nizet V., Götz F., Peschel A.. ( 2008;). The GraRS regulatory system controls Staphylococcus aureus susceptibility to antimicrobial host defenses. BMC Microbiol8:85 [CrossRef][PubMed]
    [Google Scholar]
  31. Kubica M., Guzik K., Koziel J., Zarebski M., Richter W., Gajkowska B., Golda A., Maciag-Gudowska A., Brix K. et al. ( 2008;). A potential new pathway for Staphylococcus aureus dissemination: the silent survival of S. aureus phagocytosed by human monocyte-derived macrophages. PLoS ONE3:e1409 [CrossRef][PubMed]
    [Google Scholar]
  32. Kuroda M., Kuroda H., Oshima T., Takeuchi F., Mori H., Hiramatsu K.. ( 2003;). Two-component system VraSR positively modulates the regulation of cell-wall biosynthesis pathway in Staphylococcus aureus . Mol Microbiol49:807–821 [CrossRef][PubMed]
    [Google Scholar]
  33. Levy O.. ( 2000;). Antimicrobial proteins and peptides of blood: templates for novel antimicrobial agents. Blood96:2664–2672[PubMed]
    [Google Scholar]
  34. Li M., Cha D. J., Lai Y., Villaruz A. E., Sturdevant D. E., Otto M.. ( 2007;). The antimicrobial peptide-sensing system aps of Staphylococcus aureus . Mol Microbiol66:1136–1147 [CrossRef][PubMed]
    [Google Scholar]
  35. Livak K. J., Schmittgen T. D.. ( 2001;). Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCt method. Methods25:402–408 [CrossRef][PubMed]
    [Google Scholar]
  36. Lowy F. D.. ( 1998;). Staphylococcus aureus infections. N Engl J Med339:520–532 [CrossRef][PubMed]
    [Google Scholar]
  37. Mascher T.. ( 2006;). Intramembrane-sensing histidine kinases: a new family of cell envelope stress sensors in Firmicutes bacteria. FEMS Microbiol Lett264:133–144 [CrossRef][PubMed]
    [Google Scholar]
  38. Matsuo M., Kato F., Oogai Y., Kawai T., Sugai M., Komatsuzawa H.. ( 2010;). Distinct two-component systems in methicillin-resistant Staphylococcus aureus can change the susceptibility to antimicrobial agents. J Antimicrob Chemother65:1536–1537 [CrossRef][PubMed]
    [Google Scholar]
  39. McNamara P. J., Milligan-Monroe K. C., Khalili S., Proctor R. A.. ( 2000;). Identification, cloning, and initial characterization of rot, a locus encoding a regulator of virulence factor expression in Staphylococcus aureus . J Bacteriol182:3197–3203 [CrossRef][PubMed]
    [Google Scholar]
  40. Meehl M., Herbert S., Götz F., Cheung A.. ( 2007;). Interaction of the GraRS two-component system with the VraFG ABC transporter to support vancomycin-intermediate resistance in Staphylococcus aureus . Antimicrob Agents Chemother51:2679–2689 [CrossRef][PubMed]
    [Google Scholar]
  41. Merino N., Toledo-Arana A., Vergara-Irigaray M., Valle J., Solano C., Calvo E., Lopez J. A., Foster T. J., Penadés J. R., Lasa I.. ( 2009;). Protein A-mediated multicellular behavior in Staphylococcus aureus . J Bacteriol191:832–843 [CrossRef][PubMed]
    [Google Scholar]
  42. Muthaiyan A., Silverman J. A., Jayaswal R. K., Wilkinson B. J.. ( 2008;). Transcriptional profiling reveals that daptomycin induces the Staphylococcus aureus cell wall stress stimulon and genes responsive to membrane depolarization. Antimicrob Agents Chemother52:980–990 [CrossRef][PubMed]
    [Google Scholar]
  43. Nilsson R. P., Beijer L., Rutberg B.. ( 1994;). The glpT and glpQ genes of the glycerol regulon in Bacillus subtilis . Microbiology140:723–730 [CrossRef][PubMed]
    [Google Scholar]
  44. Novick R. P.. ( 2006;). Staphylococcal pathogenesis and pathogenicity factors: genetics and regulation. Gram-positive Pathogens496–516 Fischetti V. A., Novick R. P., Ferretti J. J., Portnoy D. A., Rood J. I.. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  45. Novick R. P., Projan S. J., Kornblum J., Ross H. F., Ji G., Kreiswirth B., Vandenesch F., Moghazeh S., Novick R. P.. ( 1995;). The agr P2 operon: an autocatalytic sensory transduction system in Staphylococcus aureus . Mol Gen Genet248:446–458 [CrossRef][PubMed]
    [Google Scholar]
  46. Pagels M., Fuchs S., Pané-Farré J., Kohler C., Menschner L., Hecker M., McNamarra P. J., Bauer M. C., von Wachenfeldt C. et al. ( 2010;). Redox sensing by a Rex-family repressor is involved in the regulation of anaerobic gene expression in Staphylococcus aureus . Mol Microbiol76:1142–1161 [CrossRef][PubMed]
    [Google Scholar]
  47. Petek M., Baebler S., Kuzman D., Rotter A., Podlesek Z., Gruden K., Ravnikar M., Urleb U.. ( 2010;). Revealing fosfomycin primary effect on Staphylococcus aureus transcriptome: modulation of cell envelope biosynthesis and phosphoenolpyruvate induced starvation. BMC Microbiol10:159 [CrossRef][PubMed]
    [Google Scholar]
  48. Pietiäinen M., François P., Hyyryläinen H. L., Tangomo M., Sass V., Sahl H. G., Schrenzel J., Kontinen V. P.. ( 2009;). Transcriptome analysis of the responses of Staphylococcus aureus to antimicrobial peptides and characterization of the roles of vraDE and vraSR in antimicrobial resistance. BMC Genomics10:429 [CrossRef][PubMed]
    [Google Scholar]
  49. Ray P. H., Lillich T. T., White D. C.. ( 1972;). Consequences of glycerol deprivation on the synthesis of membrane components in a glycerol auxotroph of Staphylococcus aureus . J Bacteriol112:413–420[PubMed]
    [Google Scholar]
  50. Riordan J. T., Tietjen J. A., Walsh C. W., Gustafson J. E., Whittam T. S.. ( 2010;). Inactivation of alternative sigma factor 54 (RpoN) leads to increased acid resistance, and alters locus of enterocyte effacement (LEE) expression in Escherichia coli O157 : H7. Microbiology156:719–730 [CrossRef][PubMed]
    [Google Scholar]
  51. Schlag S., Fuchs S., Nerz C., Gaupp R., Engelmann S., Liebeke M., Lalk M., Hecker M., Götz F.. ( 2008;). Characterization of the oxygen-responsive NreABC regulon of Staphylococcus aureus . J Bacteriol190:7847–7858 [CrossRef][PubMed]
    [Google Scholar]
  52. Schneider T., Sahl H. G.. ( 2010;). Lipid II and other bactoprenol-bound cell wall precursors as drug targets. Curr Opin Investig Drugs11:157–164[PubMed]
    [Google Scholar]
  53. Shaw L., Golonka E., Potempa J., Foster S. J.. ( 2004;). The role and regulation of the extracellular proteases of Staphylococcus aureus . Microbiology150:217–228 [CrossRef][PubMed]
    [Google Scholar]
  54. Shaw L. N., Golonka E., Szmyd G., Foster S. J., Travis J., Potempa J.. ( 2005;). Cytoplasmic control of premature activation of a secreted protease zymogen: deletion of staphostatin B (SspC) in Staphylococcus aureus 8325-4 yields a profound pleiotropic phenotype. J Bacteriol187:1751–1762 [CrossRef][PubMed]
    [Google Scholar]
  55. Shaw L. N., Aish J., Davenport J. E., Brown M. C., Lithgow J. K., Simmonite K., Crossley H., Travis J., Potempa J., Foster S. J.. ( 2006;). Investigations into σB-modulated regulatory pathways governing extracellular virulence determinant production in Staphylococcus aureus . J Bacteriol188:6070–6080 [CrossRef][PubMed]
    [Google Scholar]
  56. Shaw L. N., Jonsson I. M., Singh V. K., Tarkowski A., Stewart G. C.. ( 2007;). Inactivation of traP has no effect on the agr quorum-sensing system or virulence of Staphylococcus aureus . Infect Immun75:4519–4527 [CrossRef][PubMed]
    [Google Scholar]
  57. Shaw L. N., Lindholm C., Prajsnar T. K., Miller H. K., Brown M. C., Golonka E., Stewart G. C., Tarkowski A., Potempa J.. ( 2008;). Identification and characterization of σ, a novel component of the Staphylococcus aureus stress and virulence responses. PLoS ONE3:e3844 [CrossRef][PubMed]
    [Google Scholar]
  58. Staroń A., Finkeisen D. E., Mascher T.. ( 2011;). Peptide antibiotic sensing and detoxification modules of Bacillus subtilis . Antimicrob Agents Chemother55:515–525 [CrossRef][PubMed]
    [Google Scholar]
  59. Sullivan M. A., Yasbin R. E., Young F. E.. ( 1984;). New shuttle vectors for Bacillus subtilis and Escherichia coli which allow rapid detection of inserted fragments. Gene29:21–26[CrossRef]
    [Google Scholar]
  60. Sun J., Zheng L., Landwehr C., Yang J., Ji Y.. ( 2005;). Identification of a novel essential two-component signal transduction system, YhcSR, in Staphylococcus aureus . J Bacteriol187:7876–7880 [CrossRef][PubMed]
    [Google Scholar]
  61. Torres V. J., Stauff D. L., Pishchany G., Bezbradica J. S., Gordy L. E., Iturregui J., Anderson K. L., Dunman P. M., Joyce S., Skaar E. P.. ( 2007;). A Staphylococcus aureus regulatory system that responds to host heme and modulates virulence. Cell Host Microbe1:109–119 [CrossRef][PubMed]
    [Google Scholar]
  62. Tsang L. H., Cassat J. E., Shaw L. N., Beenken K. E., Smeltzer M. S.. ( 2008;). Factors contributing to the biofilm-deficient phenotype of Staphylococcus aureus sarA mutants. PLoS ONE3:e3361 [CrossRef][PubMed]
    [Google Scholar]
  63. Yarwood J. M., McCormick J. K., Schlievert P. M.. ( 2001;). Identification of a novel two-component regulatory system that acts in global regulation of virulence factors of Staphylococcus aureus . J Bacteriol183:1113–1123 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.049692-0
Loading
/content/journal/micro/10.1099/mic.0.049692-0
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error