1887

Abstract

Type IV pili (TFP) are membrane-anchored filaments with a number of important biological functions. In the model organism , TFP act as molecular engines that power social (S) motility through cycles of extension and retraction. TFP filaments consist of several thousand copies of a protein called PilA or pilin. PilA contains an N-terminal α-helix essential for TFP assembly and a C-terminal globular domain important for its activity. The role of the PilA sequence and its structure–function relationship in TFP-dependent S motility remain active areas of research. In this study, we identified an PilA mutant carrying an alanine to valine substitution at position 32 in the α-helix, which produced structurally intact but retraction-defective TFP. Characterization of this mutant and additional single-residue variants at this position in PilA demonstrated the critical role of alanine 32 in PilA stability, TFP assembly and retraction.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.049684-0
2011-07-01
2019-12-05
Loading full text...

Full text loading...

/deliver/fulltext/micro/157/7/1920.html?itemId=/content/journal/micro/10.1099/mic.0.049684-0&mimeType=html&fmt=ahah

References

  1. Aas F. E., Winther-Larsen H. C., Wolfgang M., Frye S., Løvold C., Roos N., van Putten J. P., Koomey M.. ( 2007;). Substitutions in the N-terminal alpha helical spine of Neisseria gonorrhoeae pilin affect type IV pilus assembly, dynamics and associated functions. . Mol Microbiol 63:, 69–85. [CrossRef].[PubMed]
    [Google Scholar]
  2. Black W. P., Yang Z.. ( 2004;). Myxococcus xanthus chemotaxis homologs DifD and DifG negatively regulate fibril polysaccharide production. . J Bacteriol 186:, 1001–1008. [CrossRef].[PubMed]
    [Google Scholar]
  3. Black W. P., Xu Q., Yang Z.. ( 2006;). Type IV pili function upstream of the Dif chemotaxis pathway in Myxococcus xanthus EPS regulation. . Mol Microbiol 61:, 447–456. [CrossRef].[PubMed]
    [Google Scholar]
  4. Bradley D. E.. ( 1980;). A function of Pseudomonas aeruginosa PAO polar pili: twitching motility. . Can J Microbiol 26:, 146–154. [CrossRef].[PubMed]
    [Google Scholar]
  5. Campos J. M., Geisselsoder J., Zusman D. R.. ( 1978;). Isolation of bacteriophage MX4, a generalized transducing phage for Myxococcus xanthus. . J Mol Biol 119:, 167–178. [CrossRef].[PubMed]
    [Google Scholar]
  6. Craig L., Taylor R. K., Pique M. E., Adair B. D., Arvai A. S., Singh M., Lloyd S. J., Shin D. S., Getzoff E. D. et al. ( 2003;). Type IV pilin structure and assembly: X-ray and EM analyses of Vibrio cholerae toxin-coregulated pilus and Pseudomonas aeruginosa PAK pilin. . Mol Cell 11:, 1139–1150. [CrossRef].[PubMed]
    [Google Scholar]
  7. Craig L., Pique M. E., Tainer J. A.. ( 2004;). Type IV pilus structure and bacterial pathogenicity. . Nat Rev Microbiol 2:, 363–378. [CrossRef].[PubMed]
    [Google Scholar]
  8. Craig L., Volkmann N., Arvai A. S., Pique M. E., Yeager M., Egelman E. H., Tainer J. A.. ( 2006;). Type IV pilus structure by cryo-electron microscopy and crystallography: implications for pilus assembly and functions. . Mol Cell 23:, 651–662. [CrossRef].[PubMed]
    [Google Scholar]
  9. Giltner C. L., van Schaik E. J., Audette G. F., Kao D., Hodges R. S., Hassett D. J., Irvin R. T.. ( 2006;). The Pseudomonas aeruginosa type IV pilin receptor binding domain functions as an adhesin for both biotic and abiotic surfaces. . Mol Microbiol 59:, 1083–1096. [CrossRef].[PubMed]
    [Google Scholar]
  10. Hagen D. C., Bretscher A. P., Kaiser D.. ( 1978;). Synergism between morphogenetic mutants of Myxococcus xanthus. . Dev Biol 64:, 284–296. [CrossRef].[PubMed]
    [Google Scholar]
  11. Harlow E., Lane D.. ( 1988;). Antibodies: a Laboratory Manual. Cold Spring Harbor, NY:: Cold Spring Harbor Laboratory;.
    [Google Scholar]
  12. Hazes B., Sastry P. A., Hayakawa K., Read R. J., Irvin R. T.. ( 2000;). Crystal structure of Pseudomonas aeruginosa PAK pilin suggests a main-chain-dominated mode of receptor binding. . J Mol Biol 299:, 1005–1017. [CrossRef].[PubMed]
    [Google Scholar]
  13. Hodgkin J., Kaiser D.. ( 1979;). Genetics of gliding motility in Myxococcus xanthus (Myxobacterales): two gene systems control movement. . Mol Gen Genet 171:, 177–191. [CrossRef]
    [Google Scholar]
  14. Jakovljevic V., Leonardy S., Hoppert M., Søgaard-Andersen L.. ( 2008;). PilB and PilT are ATPases acting antagonistically in type IV pilus function in Myxococcus xanthus. . J Bacteriol 190:, 2411–2421. [CrossRef].[PubMed]
    [Google Scholar]
  15. Kaiser D.. ( 1979;). Social gliding is correlated with the presence of pili in Myxococcus xanthus. . Proc Natl Acad Sci U S A 76:, 5952–5956. [CrossRef].[PubMed]
    [Google Scholar]
  16. Kashefi K., Hartzell P. L.. ( 1995;). Genetic suppression and phenotypic masking of a Myxococcus xanthus frzF defect. . Mol Microbiol 15:, 483–494. [CrossRef].[PubMed]
    [Google Scholar]
  17. Keizer D. W., Slupsky C. M., Kalisiak M., Campbell A. P., Crump M. P., Sastry P. A., Hazes B., Irvin R. T., Sykes B. D.. ( 2001;). Structure of a pilin monomer from Pseudomonas aeruginosa: implications for the assembly of pili. . J Biol Chem 276:, 24186–24193. [CrossRef].[PubMed]
    [Google Scholar]
  18. Lee K. K., Sheth H. B., Wong W. Y., Sherburne R., Paranchych W., Hodges R. S., Lingwood C. A., Krivan H., Irvin R. T.. ( 1994;). The binding of Pseudomonas aeruginosa pili to glycosphingolipids is a tip-associated event involving the C-terminal region of the structural pilin subunit. . Mol Microbiol 11:, 705–713. [CrossRef].[PubMed]
    [Google Scholar]
  19. Li Y., Sun H., Ma X., Lu A., Lux R., Zusman D., Shi W.. ( 2003;). Extracellular polysaccharides mediate pilus retraction during social motility of Myxococcus xanthus. . Proc Natl Acad Sci U S A 100:, 5443–5448. [CrossRef].[PubMed]
    [Google Scholar]
  20. Li Y., Lux R., Pelling A. E., Gimzewski J. K., Shi W.. ( 2005;). Analysis of type IV pilus and its associated motility in Myxococcus xanthus using an antibody reactive with native pilin and pili. . Microbiology 151:, 353–360. [CrossRef].[PubMed]
    [Google Scholar]
  21. MacNeil S. D., Mouzeyan A., Hartzell P. L.. ( 1994;). Genes required for both gliding motility and development in Myxococcus xanthus. . Mol Microbiol 14:, 785–795. [CrossRef].[PubMed]
    [Google Scholar]
  22. Mathews C. K., Van Holde K. E., Ahern K. G.. ( 2000;). Biochemistry, , 3rd edn.. San Francisco, CA:: Benjamin Cummings;.
    [Google Scholar]
  23. Nudleman E., Kaiser D.. ( 2004;). Pulling together with type IV pili. . J Mol Microbiol Biotechnol 7:, 52–62. [CrossRef].[PubMed]
    [Google Scholar]
  24. Parge H. E., Forest K. T., Hickey M. J., Christensen D. A., Getzoff E. D., Tainer J. A.. ( 1995;). Structure of the fibre-forming protein pilin at 2.6 Å resolution. . Nature 378:, 32–38. [CrossRef].[PubMed]
    [Google Scholar]
  25. Sambrook J., Russell D. W.. ( 2001;). Molecular Cloning: a Laboratory Manual. Cold Spring Harbor, NY:: Cold Spring Harbor Laboratory;.
    [Google Scholar]
  26. Satyshur K. A., Worzalla G. A., Meyer L. S., Heiniger E. K., Aukema K. G., Misic A. M., Forest K. T.. ( 2007;). Crystal structures of the pilus retraction motor PilT suggest large domain movements and subunit cooperation drive motility. . Structure 15:, 363–376. [CrossRef].[PubMed]
    [Google Scholar]
  27. Scheuerpflug I., Rudel T., Ryll R., Pandit J., Meyer T. F.. ( 1999;). Roles of PilC and PilE proteins in pilus-mediated adherence of Neisseria gonorrhoeae and Neisseria meningitidis to human erythrocytes and endothelial and epithelial cells. . Infect Immun 67:, 834–843.[PubMed]
    [Google Scholar]
  28. Sheth H. B., Glasier L. M., Ellert N. W., Cachia P., Kohn W., Lee K. K., Paranchych W., Hodges R. S., Irvin R. T.. ( 1995;). Development of an anti-adhesive vaccine for Pseudomonas aeruginosa targeting the C-terminal region of the pilin structural protein. . Biomed Pept Proteins Nucleic Acids 1:, 141–148.[PubMed]
    [Google Scholar]
  29. Shi W., Zusman D. R.. ( 1993;). The two motility systems of Myxococcus xanthus show different selective advantages on various surfaces. . Proc Natl Acad Sci U S A 90:, 3378–3382. [CrossRef].[PubMed]
    [Google Scholar]
  30. Sun H., Zusman D. R., Shi W.. ( 2000;). Type IV pilus of Myxococcus xanthus is a motility apparatus controlled by the frz chemosensory system. . Curr Biol 10:, 1143–1146. [CrossRef].[PubMed]
    [Google Scholar]
  31. Wu S. S., Kaiser D.. ( 1995;). Genetic and functional evidence that type IV pili are required for social gliding motility in Myxococcus xanthus. . Mol Microbiol 18:, 547–558. [CrossRef].[PubMed]
    [Google Scholar]
  32. Wu S. S., Kaiser D.. ( 1996;). Markerless deletions of pil genes in Myxococcus xanthus generated by counterselection with the Bacillus subtilis sacB gene. . J Bacteriol 178:, 5817–5821.[PubMed]
    [Google Scholar]
  33. Wu S. S., Wu J., Kaiser D.. ( 1997;). The Myxococcus xanthus pilT locus is required for social gliding motility although pili are still produced. . Mol Microbiol 23:, 109–121. [CrossRef].[PubMed]
    [Google Scholar]
  34. Yang Z., Geng Y., Xu D., Kaplan H. B., Shi W.. ( 1998;). A new set of chemotaxis homologues is essential for Myxococcus xanthus social motility. . Mol Microbiol 30:, 1123–1130. [CrossRef].[PubMed]
    [Google Scholar]
  35. Yang Z., Ma X., Tong L., Kaplan H. B., Shimkets L. J., Shi W.. ( 2000;). Myxococcus xanthus dif genes are required for biogenesis of cell surface fibrils essential for social gliding motility. . J Bacteriol 182:, 5793–5798. [CrossRef].[PubMed]
    [Google Scholar]
  36. Yang Z., Lux R., Hu W., Hu C., Shi W.. ( 2010;). PilA localization affects extracellular polysaccharide production and fruiting body formation in Myxococcus xanthus. . Mol Microbiol 76:, 1500–1513. [CrossRef].[PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.049684-0
Loading
/content/journal/micro/10.1099/mic.0.049684-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error