1887

Abstract

Over the last century, the successful attenuation of multiple bacterial and viral pathogens has led to an effective, robust and safe form of vaccination. Recently, these vaccines have been evaluated as delivery vectors for heterologous antigens, as a means of simultaneous vaccination against two pathogens. The general consensus from published studies is that these vaccine vectors have the potential to be both safe and efficacious. However, some of the commonly employed vectors, for example and adenovirus, often have pre-existing immune responses in the host and this has the potential to modify the subsequent immune response to a vectored antigen. This review examines the literature on this topic, and concludes that for bacterial vectors there can in fact, in some cases, be an enhancement in immunogenicity, typically humoral, while for viral vectors pre-existing immunity is a hindrance for subsequent induction of cell-mediated responses.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.049601-0
2013-01-01
2020-01-22
Loading full text...

Full text loading...

/deliver/fulltext/micro/159/1/1.html?itemId=/content/journal/micro/10.1099/mic.0.049601-0&mimeType=html&fmt=ahah

References

  1. Alderton M. R., Fahey K. J., Coloe P. J.. ( 1991;). Humoral responses and salmonellosis protection in chickens given a vitamin-dependent Salmonella typhimurium mutant. Avian Dis35:435–442 [CrossRef][PubMed]
    [Google Scholar]
  2. Alexander J., Ward S., Mendy J., Manayani D. J., Farness P., Avanzini J. B., Guenther B., Garduno F., Jow L.. & other authors ( 2012;). Pre-clinical evaluation of a replication-competent recombinant adenovirus serotype 4 vaccine expressing influenza H5 hemagglutinin. PLoS ONE7:e31177 [CrossRef][PubMed]
    [Google Scholar]
  3. Appaiahgari M. B., Vrati S.. ( 2010;). IMOJEV(®): a Yellow fever virus-based novel Japanese encephalitis vaccine. Expert Rev Vaccines9:1371–1384 [CrossRef][PubMed]
    [Google Scholar]
  4. Atkins H. S., Morton M., Griffin K. F., Stokes M. G., Nataro J. P., Titball R. W.. ( 2006;). Recombinant Salmonella vaccines for biodefence. Vaccine24:2710–2717 [CrossRef][PubMed]
    [Google Scholar]
  5. Attridge S. R., Davies R., LaBrooy J. T.. ( 1997;). Oral delivery of foreign antigens by attenuated Salmonella: consequences of prior exposure to the vector strain. Vaccine15:155–162 [CrossRef][PubMed]
    [Google Scholar]
  6. Bahey-El-Din M., Casey P. G., Griffin B. T., Gahan C. G.. ( 2010;). Expression of two Listeria monocytogenes antigens (P60 and LLO) in Lactococcus lactis and examination for use as live vaccine vectors. J Med Microbiol59:904–912 [CrossRef][PubMed]
    [Google Scholar]
  7. Bao J. X., Clements J. D.. ( 1991;). Prior immunologic experience potentiates the subsequent antibody response when Salmonella strains are used as vaccine carriers. Infect Immun59:3841–3845[PubMed]
    [Google Scholar]
  8. Basso H., Rohde M., Guzmán C. A.. ( 2000;). Vectors to achieve selective expression of vaccine antigens within eukaryotic cells using Salmonella spp. as carrier strains. FEMS Microbiol Lett182:219–223 [CrossRef][PubMed]
    [Google Scholar]
  9. Beal R. K., Wigley P., Powers C., Barrow P. A., Smith A. L.. ( 2006;). Cross-reactive cellular and humoral immune responses to Salmonella enterica serovars Typhimurium and Enteritidis are associated with protection to heterologous re-challenge. Vet Immunol Immunopathol114:84–93 [CrossRef][PubMed]
    [Google Scholar]
  10. Belyakov I. M., Moss B., Strober W., Berzofsky J. A.. ( 1999;). Mucosal vaccination overcomes the barrier to recombinant vaccinia immunization caused by preexisting poxvirus immunity. Proc Natl Acad Sci U S A96:4512–4517 [CrossRef][PubMed]
    [Google Scholar]
  11. Bermúdez-Humarán L. G., Kharrat P., Chatel J. M., Langella P.. ( 2011;). Lactococci and lactobacilli as mucosal delivery vectors for therapeutic proteins and DNA vaccines. Microb Cell Fact10:Suppl. 1S4 [CrossRef][PubMed]
    [Google Scholar]
  12. Beukema E. L., Brown M. P., Hayball J. D.. ( 2006;). The potential role of fowlpox virus in rational vaccine design. Expert Rev Vaccines5:565–577 [CrossRef][PubMed]
    [Google Scholar]
  13. Bouwer H. G., Shen H., Fan X., Miller J. F., Barry R. A., Hinrichs D. J.. ( 1999;). Existing antilisterial immunity does not inhibit the development of a Listeria monocytogenes-specific primary cytotoxic T-lymphocyte response. Infect Immun67:253–258[PubMed]
    [Google Scholar]
  14. Brockman M. A., Knipe D. M.. ( 2002;). Herpes simplex virus vectors elicit durable immune responses in the presence of preexisting host immunity. J Virol76:3678–3687 [CrossRef][PubMed]
    [Google Scholar]
  15. Brockstedt D. G., Giedlin M. A., Leong M. L., Bahjat K. S., Gao Y., Luckett W., Liu W., Cook D. N., Portnoy D. A., Dubensky T. W. Jr. ( 2004;). Listeria-based cancer vaccines that segregate immunogenicity from toxicity. Proc Natl Acad Sci U S A101:13832–13837 [CrossRef][PubMed]
    [Google Scholar]
  16. Buchbinder S. P., Mehrotra D. V., Duerr A., Fitzgerald D. W., Mogg R., Li D., Gilbert P. B., Lama J. R., Marmor M.. & other authors ( 2008;). Efficacy assessment of a cell-mediated immunity HIV-1 vaccine (the Step Study): a double-blind, randomised, placebo-controlled, test-of-concept trial. Lancet372:1881–1893 [CrossRef][PubMed]
    [Google Scholar]
  17. Chengalvala M. V., Bhat B. M., Bhat R., Lubeck M. D., Mizutani S., Davis A. R., Hung P. P.. ( 1994;). Immunogenicity of high expression adenovirus-hepatitis B virus recombinant vaccines in dogs. J Gen Virol75:125–131 [CrossRef][PubMed]
    [Google Scholar]
  18. Cossart P., Mengaud J.. ( 1989;). Listeria monocytogenes. A model system for the molecular study of intracellular parasitism. Mol Biol Med6:463–474[PubMed]
    [Google Scholar]
  19. Dougan G., Hormaeche C. E., Maskell D. J.. ( 1987;). Live oral Salmonella vaccines: potential use of attenuated strains as carriers of heterologous antigens to the immune system. Parasite Immunol9:151–160 [CrossRef][PubMed]
    [Google Scholar]
  20. Draper S. J., Heeney J. L.. ( 2010;). Viruses as vaccine vectors for infectious diseases and cancer. Nat Rev Microbiol8:62–73 [CrossRef][PubMed]
    [Google Scholar]
  21. Dunstan S. J., Simmons C. P., Strugnell R. A.. ( 1998;). Comparison of the abilities of different attenuated Salmonella typhimurium strains to elicit humoral immune responses against a heterologous antigen. Infect Immun66:732–740[PubMed]
    [Google Scholar]
  22. Esteban M.. ( 2009;). Attenuated poxvirus vectors MVA and NYVAC as promising vaccine candidates against HIV/AIDS. Hum Vaccin5:867–871[PubMed][CrossRef]
    [Google Scholar]
  23. Fitzgerald J. C., Gao G. P., Reyes-Sandoval A., Pavlakis G. N., Xiang Z. Q., Wlazlo A. P., Giles-Davis W., Wilson J. M., Ertl H. C.. ( 2003;). A simian replication-defective adenoviral recombinant vaccine to HIV-1 gag. J Immunol170:1416–1422[PubMed][CrossRef]
    [Google Scholar]
  24. Foster N., Lovell M. A., Marston K. L., Hulme S. D., Frost A. J., Bland P., Barrow P. A.. ( 2003;). Rapid protection of gnotobiotic pigs against experimental salmonellosis following induction of polymorphonuclear leukocytes by avirulent Salmonella enterica . Infect Immun71:2182–2191 [CrossRef][PubMed]
    [Google Scholar]
  25. Foster N., Berndt A., Lalmanach A. C., Methner U., Pasquali P., Rychlik I., Velge P., Zhou X., Barrow P.. ( 2012;). Emergency and therapeutic vaccination – is stimulating innate immunity an option?. Res Vet Sci93:7–12 [CrossRef][PubMed]
    [Google Scholar]
  26. Gabitzsch E. S., Jones F. R.. ( 2011;). New recombinant Ad5 vector overcomes Ad5 immunity allowing for multiple safe, homologous immunizations. J Clin Cell ImmunolS4:001
    [Google Scholar]
  27. Gahan M. E., Webster D. E., Wijburg O. L., Wesselingh S. L., Strugnell R. A.. ( 2008;). Impact of prior immunological exposure on vaccine delivery by Salmonella enterica serovar Typhimurium. Vaccine26:6212–6220 [CrossRef][PubMed]
    [Google Scholar]
  28. Gao W., Soloff A. C., Lu X., Montecalvo A., Nguyen D. C., Matsuoka Y., Robbins P. D., Swayne D. E., Donis R. O.. & other authors ( 2006;). Protection of mice and poultry from lethal H5N1 avian influenza virus through adenovirus-based immunization. J Virol80:1959–1964 [CrossRef][PubMed]
    [Google Scholar]
  29. Gentschev I., Dietrich G., Spreng S., Kolb-Mäurer A., Brinkmann V., Grode L., Hess J., Kaufmann S. H., Goebel W.. ( 2001;). Recombinant attenuated bacteria for the delivery of subunit vaccines. Vaccine19:2621–2628 [CrossRef][PubMed]
    [Google Scholar]
  30. Gómez C. E., Nájera J. L., Krupa M., Esteban M.. ( 2008;). The poxvirus vectors MVA and NYVAC as gene delivery systems for vaccination against infectious diseases and cancer. Curr Gene Ther8:97–120 [CrossRef][PubMed]
    [Google Scholar]
  31. Guleria I., Teitelbaum R., McAdam R. A., Kalpana G., Jacobs W. R. Jr, Bloom B. R.. ( 1996;). Auxotrophic vaccines for tuberculosis. Nat Med2:334–337 [CrossRef][PubMed]
    [Google Scholar]
  32. Hashimoto M., Boyer J. L., Hackett N. R., Wilson J. M., Crystal R. G.. ( 2005;). Induction of protective immunity to anthrax lethal toxin with a nonhuman primate adenovirus-based vaccine in the presence of preexisting anti-human adenovirus immunity. Infect Immun73:6885–6891 [CrossRef][PubMed]
    [Google Scholar]
  33. Hocknell P. K., Wiley R. D., Wang X., Evans T. G., Bowers W. J., Hanke T., Federoff H. J., Dewhurst S.. ( 2002;). Expression of human immunodeficiency virus type 1 gp120 from herpes simplex virus type 1-derived amplicons results in potent, specific, and durable cellular and humoral immune responses. J Virol76:5565–5580 [CrossRef][PubMed]
    [Google Scholar]
  34. Hsu K.-H., Lubeck M. D., Davis A. R., Bhat R. A., Selling B. H., Bhat B. M., Mizutani S., Murphy B. R., Collins P. L.. & other authors ( 1992;). Immunogenicity of recombinant adenovirus-respiratory syncytial virus vaccines with adenovirus types 4, 5, and 7 vectors in dogs and a chimpanzee. J Infect Dis166:769–775 [CrossRef][PubMed]
    [Google Scholar]
  35. Husseiny M. I., Hensel M.. ( 2008;). Construction of highly attenuated Salmonella enterica serovar Typhimurium live vectors for delivering heterologous antigens by chromosomal integration. Microbiol Res163:605–615 [CrossRef][PubMed]
    [Google Scholar]
  36. Innocentin S., Guimarães V., Miyoshi A., Azevedo V., Langella P., Chatel J. M., Lefèvre F.. ( 2009;). Lactococcus lactis expressing either Staphylococcus aureus fibronectin-binding protein A or Listeria monocytogenes internalin A can efficiently internalize and deliver DNA in human epithelial cells. Appl Environ Microbiol75:4870–4878 [CrossRef][PubMed]
    [Google Scholar]
  37. Jensen E. R., Shen H., Wettstein F. O., Ahmed R., Miller J. F.. ( 1997;). Recombinant Listeria monocytogenes as a live vaccine vehicle and a probe for studying cell-mediated immunity. Immunol Rev158:147–157 [CrossRef][PubMed]
    [Google Scholar]
  38. Jespersgaard C., Zhang P., Hajishengallis G., Russell M. W., Michalek S. M.. ( 2001;). Effect of attenuated Salmonella enterica serovar Typhimurium expressing a Streptococcus mutans antigen on secondary responses to the cloned protein. Infect Immun69:6604–6611 [CrossRef][PubMed]
    [Google Scholar]
  39. Jiang P., Jiang W., Li Y., Wu S., Xu J.. ( 2004;). Humoral immune response induced by oral administration of S. typhimurium containing a DNA vaccine against porcine reproductive and respiratory syndrome virus. Vet Immunol Immunopathol102:321–328 [CrossRef][PubMed]
    [Google Scholar]
  40. Johnson P. V., Blair B. M., Zeller S., Kotton C. N., Hohmann E. L.. ( 2011;). Attenuated Listeria monocytogenes vaccine vectors expressing influenza A nucleoprotein: preclinical evaluation and oral inoculation of volunteers. Microbiol Immunol55:304–317 [CrossRef][PubMed]
    [Google Scholar]
  41. Kahl C. A., Bonnell J., Hiriyanna S., Fultz M., Nyberg-Hoffman C., Chen P., King C. R., Gall J. G.. ( 2010;). Potent immune responses and in vitro pro-inflammatory cytokine suppression by a novel adenovirus vaccine vector based on rare human serotype 28. Vaccine28:5691–5702 [CrossRef][PubMed]
    [Google Scholar]
  42. Kaufmann S. H.. ( 1993;). Immunity to intracellular bacteria. Annu Rev Immunol11:129–163 [CrossRef][PubMed]
    [Google Scholar]
  43. Killeen K., DiRita V.. ( 2000;). Live attenuated bacterial vaccines. New Vaccine Technologies Ellis R.. Georgetown, TX: Landes Bioscience;
    [Google Scholar]
  44. Kirby A. C., Sundquist M., Wick M. J.. ( 2004;). In vivo compartmentalization of functionally distinct, rapidly responsive antigen-specific T-cell populations in DNA-immunized or Salmonella enterica serovar Typhimurium-infected mice. Infect Immun72:6390–6400 [CrossRef][PubMed]
    [Google Scholar]
  45. Kohler J. J., Pathangey L., Hasona A., Progulske-Fox A., Brown T. A.. ( 2000a;). Long-term immunological memory induced by recombinant oral Salmonella vaccine vectors. Infect Immun68:4370–4373 [CrossRef][PubMed]
    [Google Scholar]
  46. Kohler J. J., Pathangey L. B., Gillespie S. R., Brown T. A.. ( 2000b;). Effect of preexisting immunity to Salmonella on the immune response to recombinant Salmonella enterica serovar Typhimurium expressing a Porphyromonas gingivalis hemagglutinin. Infect Immun68:3116–3120 [CrossRef][PubMed]
    [Google Scholar]
  47. Lasaro M. O., Ertl H. C.. ( 2009;). New insights on adenovirus as vaccine vectors. Mol Ther17:1333–1339 [CrossRef][PubMed]
    [Google Scholar]
  48. Lauterbach H., Ried C., Epstein A. L., Marconi P., Brocker T.. ( 2005;). Reduced immune responses after vaccination with a recombinant herpes simplex virus type 1 vector in the presence of antiviral immunity. J Gen Virol86:2401–2410 [CrossRef][PubMed]
    [Google Scholar]
  49. Leong M. L., Hampl J., Liu W., Mathur S., Bahjat K. S., Luckett W., Dubensky T. W. Jr, Brockstedt D. G.. ( 2009;). Impact of preexisting vector-specific immunity on vaccine potency: characterization of Listeria monocytogenes-specific humoral and cellular immunity in humans and modeling studies using recombinant vaccines in mice. Infect Immun77:3958–3968 [CrossRef][PubMed]
    [Google Scholar]
  50. Levine M. M., Galen J., Barry E., Noriega F., Tacket C., Sztein M., Chatfield S., Dougan G., Losonsky G., Kotloff K.. ( 1997;). Attenuated Salmonella typhi and Shigella as live oral vaccines and as live vectors. Behring Inst Mitt98:120–123[PubMed]
    [Google Scholar]
  51. Liljebjelke K. A., Hofacre C. L., Liu T., White D. G., Ayers S., Young S., Maurer J. J.. ( 2005;). Vertical and horizontal transmission of Salmonella within integrated broiler production system. Foodborne Pathog Dis2:90–102 [CrossRef][PubMed]
    [Google Scholar]
  52. Limbach K. J., Richie T. L.. ( 2009;). Viral vectors in malaria vaccine development. Parasite Immunol31:501–519 [CrossRef][PubMed]
    [Google Scholar]
  53. Liu J., Ewald B. A., Lynch D. M., Denholtz M., Abbink P., Lemckert A. A., Carville A., Mansfield K. G., Havenga M. J.. & other authors ( 2008;). Magnitude and phenotype of cellular immune responses elicited by recombinant adenovirus vectors and heterologous prime-boost regimens in rhesus monkeys. J Virol82:4844–4852 [CrossRef][PubMed]
    [Google Scholar]
  54. Lo W. F., Ong H., Metcalf E. S., Soloski M. J.. ( 1999;). T cell responses to Gram-negative intracellular bacterial pathogens: a role for CD8+ T cells in immunity to Salmonella infection and the involvement of MHC class Ib molecules. J Immunol162:5398–5406[PubMed]
    [Google Scholar]
  55. Mandl S., Hix L., Andino R.. ( 2001;). Preexisting immunity to poliovirus does not impair the efficacy of recombinant poliovirus vaccine vectors. J Virol75:622–627 [CrossRef][PubMed]
    [Google Scholar]
  56. Mastroeni P., Chabalgoity J. A., Dunstan S. J., Maskell D. J., Dougan G.. ( 2001;). Salmonella: immune responses and vaccines. Vet J161:132–164 [CrossRef][PubMed]
    [Google Scholar]
  57. McElrath M. J., De Rosa S. C., Moodie Z., Dubey S., Kierstead L., Janes H., Defawe O. D., Carter D. K., Hural J.. & other authors ( 2008;). HIV-1 vaccine-induced immunity in the test-of-concept Step Study: a case-cohort analysis. Lancet372:1894–1905 [CrossRef][PubMed]
    [Google Scholar]
  58. Methner U., Barrow P. A., Berndt A.. ( 2010;). Induction of a homologous and heterologous invasion–inhibition effect after administration of Salmonella strains to newly hatched chicks. Vaccine28:6958–6963 [CrossRef][PubMed]
    [Google Scholar]
  59. Metzger W. G., Mansouri E., Kronawitter M., Diescher S., Soerensen M., Hurwitz R., Bumann D., Aebischer T., Von Specht B. U., Meyer T. F.. ( 2004;). Impact of vector-priming on the immunogenicity of a live recombinant Salmonella enterica serovar Typhi Ty21a vaccine expressing urease A and B from Helicobacter pylori in human volunteers. Vaccine22:2273–2277 [CrossRef][PubMed]
    [Google Scholar]
  60. Minke J. M., Audonnet J. C., Fischer L.. ( 2004;). Equine viral vaccines: the past, present and future. Vet Res35:425–443 [CrossRef][PubMed]
    [Google Scholar]
  61. Mittrücker H. W., Kaufmann S. H.. ( 2000;). Immune response to infection with Salmonella typhimurium in mice. J Leukoc Biol67:457–463[PubMed]
    [Google Scholar]
  62. Mooij P., Balla-Jhagjhoorsingh S. S., Koopman G., Beenhakker N., van Haaften P., Baak I., Nieuwenhuis I. G., Kondova I., Wagner R.. & other authors ( 2008;). Differential CD4+ versus CD8+ T-cell responses elicited by different poxvirus-based human immunodeficiency virus type 1 vaccine candidates provide comparable efficacies in primates. J Virol82:2975–2988 [CrossRef][PubMed]
    [Google Scholar]
  63. Nauciel C.. ( 1990;). Role of CD4+ T cells and T-independent mechanisms in acquired resistance to Salmonella typhimurium infection. J Immunol145:1265–1269[PubMed]
    [Google Scholar]
  64. Pamer E. G., Sijts A. J., Villanueva M. S., Busch D. H., Vijh S.. ( 1997;). MHC class I antigen processing of Listeria monocytogenes proteins: implications for dominant and subdominant CTL responses. Immunol Rev158:129–136 [CrossRef][PubMed]
    [Google Scholar]
  65. Pandey A., Singh N., Vemula S. V., Couëtil L., Katz J. M., Donis R., Sambhara S., Mittal S. K.. ( 2012;). Impact of preexisting adenovirus vector immunity on immunogenicity and protection conferred with an adenovirus-based H5N1 influenza vaccine. PLoS ONE7:e33428 [CrossRef][PubMed]
    [Google Scholar]
  66. Peters C., Peng X., Douven D., Pan Z. K., Paterson Y.. ( 2003;). The induction of HIV Gag-specific CD8+ T cells in the spleen and gut-associated lymphoid tissue by parenteral or mucosal immunization with recombinant Listeria monocytogenes HIV Gag. J Immunol170:5176–5187[PubMed][CrossRef]
    [Google Scholar]
  67. Pichla-Gollon S. L., Lin S. W., Hensley S. E., Lasaro M. O., Herkenhoff-Haut L., Drinker M., Tatsis N., Gao G. P., Wilson J. M.. & other authors ( 2009;). Effect of preexisting immunity on an adenovirus vaccine vector: in vitro neutralization assays fail to predict inhibition by antiviral antibody in vivo. J Virol83:5567–5573 [CrossRef][PubMed]
    [Google Scholar]
  68. Pine S. O., Kublin J. G., Hammer S. M., Borgerding J., Huang Y., Casimiro D. R., McElrath M. J.. ( 2011;). Pre-existing adenovirus immunity modifies a complex mixed Th1 and Th2 cytokine response to an Ad5/HIV-1 vaccine candidate in humans. PLoS ONE6:e18526 [CrossRef][PubMed]
    [Google Scholar]
  69. Priddy F. H., Brown D., Kublin J., Monahan K., Wright D. P., Lalezari J., Santiago S., Marmor M., Lally M.. & other authors ( 2008;). Safety and immunogenicity of a replication-incompetent adenovirus type 5 HIV-1 clade B gag/pol/nef vaccine in healthy adults. Clin Infect Dis46:1769–1781 [CrossRef][PubMed]
    [Google Scholar]
  70. Radosevic K., Wieland C. W., Rodriguez A., Weverling G. J., Mintardjo R., Gillissen G., Vogels R., Skeiky Y. A., Hone D. M.. & other authors ( 2007;). Protective immune responses to a recombinant adenovirus type 35 tuberculosis vaccine in two mouse strains: CD4 and CD8 T-cell epitope mapping and role of gamma interferon. Infect Immun75:4105–4115 [CrossRef][PubMed]
    [Google Scholar]
  71. Rimmelzwaan G. F., Sutter G.. ( 2009;). Candidate influenza vaccines based on recombinant modified vaccinia virus Ankara. Expert Rev Vaccines8:447–454 [CrossRef][PubMed]
    [Google Scholar]
  72. Roberts M., Bacon A., Li J., Chatfield S.. ( 1999;). Prior immunity to homologous and heterologous Salmonella serotypes suppresses local and systemic anti-fragment C antibody responses and protection from tetanus toxin in mice immunized with Salmonella strains expressing fragment C. Infect Immun67:3810–3815[PubMed]
    [Google Scholar]
  73. Roberts D. M., Nanda A., Havenga M. J., Abbink P., Lynch D. M., Ewald B. A., Liu J., Thorner A. R., Swanson P. E.. & other authors ( 2006;). Hexon-chimaeric adenovirus serotype 5 vectors circumvent pre-existing anti-vector immunity. Nature441:239–243 [CrossRef][PubMed]
    [Google Scholar]
  74. Rollier C. S., Reyes-Sandoval A., Cottingham M. G., Ewer K., Hill A. V.. ( 2011;). Viral vectors as vaccine platforms: deployment in sight. Curr Opin Immunol23:377–382 [CrossRef][PubMed]
    [Google Scholar]
  75. Saxena M., Coloe P. J., Smooker P. M.. ( 2009;). Influence of promoter, gene copy number, and preexisting immunity on humoral and cellular responses to a vectored antigen delivered by a Salmonella enterica vaccine. Clin Vaccine Immunol16:78–87 [CrossRef][PubMed]
    [Google Scholar]
  76. Schirrmacher V., Fournier P.. ( 2009;). Newcastle disease virus: a promising vector for viral therapy, immune therapy, and gene therapy of cancer. Methods Mol Biol542:565–605 [CrossRef][PubMed]
    [Google Scholar]
  77. Sevil Domènech V. E., Panthel K., Meinel K. M., Winter S. E., Rüssmann H.. ( 2007;). Pre-existing anti-Salmonella vector immunity prevents the development of protective antigen-specific CD8 T-cell frequencies against murine listeriosis. Microbes Infect9:1447–1453 [CrossRef][PubMed]
    [Google Scholar]
  78. Sevil Domènech V. E., Panthel K., Winter S. E., Rüssmann H.. ( 2008;). Heterologous prime–boost immunizations with different Salmonella serovars for enhanced antigen-specific CD8 T-cell induction. Vaccine26:1879–1886 [CrossRef][PubMed]
    [Google Scholar]
  79. Shen H., Slifka M. K., Matloubian M., Jensen E. R., Ahmed R., Miller J. F.. ( 1995;). Recombinant Listeria monocytogenes as a live vaccine vehicle for the induction of protective anti-viral cell-mediated immunity. Proc Natl Acad Sci U S A92:3987–3991 [CrossRef][PubMed]
    [Google Scholar]
  80. Shiver J. W., Fu T. M., Chen L., Casimiro D. R., Davies M. E., Evans R. K., Zhang Z. Q., Simon A. J., Trigona W. L.. & other authors ( 2002;). Replication-incompetent adenoviral vaccine vector elicits effective anti-immunodeficiency-virus immunity. Nature415:331–335 [CrossRef][PubMed]
    [Google Scholar]
  81. Sirard J. C., Niedergang F., Kraehenbuhl J. P.. ( 1999;). Live attenuated Salmonella: a paradigm of mucosal vaccines. Immunol Rev171:5–26 [CrossRef][PubMed]
    [Google Scholar]
  82. Starks H., Bruhn K. W., Shen H., Barry R. A., Dubensky T. W., Brockstedt D., Hinrichs D. J., Higgins D. E., Miller J. F.. & other authors ( 2004;). Listeria monocytogenes as a vaccine vector: virulence attenuation or existing antivector immunity does not diminish therapeutic efficacy. J Immunol173:420–427[PubMed][CrossRef]
    [Google Scholar]
  83. Steffensen M. A., Jensen B. A. H., Holst P. J., Bassi M. R., Christensen J. P., Thomsen A. R.. ( 2012;). Pre-existing vector immunity does not prevent replication deficient adenovirus from inducing efficient CD8 T-cell memory and recall responses. PLoS ONE7:e34884 [CrossRef][PubMed]
    [Google Scholar]
  84. Stevens R., Lavoy A., Nordone S., Burkhard M., Dean G. A.. ( 2005;). Pre-existing immunity to pathogenic Listeria monocytogenes does not prevent induction of immune responses to feline immunodeficiency virus by a novel recombinant Listeria monocytogenes vaccine. Vaccine23:1479–1490 [CrossRef][PubMed]
    [Google Scholar]
  85. Stoyanov C. T., Boscardin S. B., Deroubaix S., Barba-Spaeth G., Franco D., Nussenzweig R. S., Nussenzweig M., Rice C. M.. ( 2010;). Immunogenicity and protective efficacy of a recombinant yellow fever vaccine against the murine malarial parasite Plasmodium yoelii . Vaccine28:4644–4652 [CrossRef][PubMed]
    [Google Scholar]
  86. Tobias J., Svennerholm A. M.. ( 2012;). Strategies to overexpress enterotoxigenic Escherichia coli (ETEC) colonization factors for the construction of oral whole-cell inactivated ETEC vaccine candidates. Appl Microbiol Biotechnol93:2291–2300 [CrossRef][PubMed]
    [Google Scholar]
  87. Tobias J., Lebens M., Bölin I., Wiklund G., Svennerholm A. M.. ( 2008;). Construction of non-toxic Escherichia coli and Vibrio cholerae strains expressing high and immunogenic levels of enterotoxigenic E. coli colonization factor I fimbriae. Vaccine26:743–752 [CrossRef][PubMed]
    [Google Scholar]
  88. Tobias J., Holmgren J., Hellman M., Nygren E., Lebens M., Svennerholm A. M.. ( 2010;). Over-expression of major colonization factors of enterotoxigenic Escherichia coli, alone or together, on non-toxigenic E. coli bacteria. Vaccine28:6977–6984 [CrossRef][PubMed]
    [Google Scholar]
  89. Tvinnereim A. R., Hamilton S. E., Harty J. T.. ( 2002;). CD8+-T-cell response to secreted and nonsecreted antigens delivered by recombinant Listeria monocytogenes during secondary infection. Infect Immun70:153–162 [CrossRef][PubMed]
    [Google Scholar]
  90. Vemula S. V., Mittal S. K.. ( 2010;). Production of adenovirus vectors and their use as a delivery system for influenza vaccines. Expert Opin Biol Ther10:1469–1487 [CrossRef][PubMed]
    [Google Scholar]
  91. Vijh S., Pilip I. M., Pamer E. G.. ( 1999;). Noncompetitive expansion of cytotoxic T lymphocytes specific for different antigens during bacterial infection. Infect Immun67:1303–1309[PubMed]
    [Google Scholar]
  92. Vindurampulle C. J., Attridge S. R.. ( 2003a;). Vector priming reduces the immunogenicity of Salmonella-based vaccines in Nramp1+/+ mice. Infect Immun71:2258–2261 [CrossRef][PubMed]
    [Google Scholar]
  93. Vindurampulle C. J., Attridge S. R.. ( 2003b;). Impact of vector priming on the immunogenicity of recombinant Salmonella vaccines. Infect Immun71:287–297 [CrossRef][PubMed]
    [Google Scholar]
  94. Ward S. J., Douce G., Figueiredo D., Dougan G., Wren B. W.. ( 1999;). Immunogenicity of a Salmonella typhimurium aroA aroD vaccine expressing a nontoxic domain of Clostridium difficile toxin A. Infect Immun67:2145–2152[PubMed]
    [Google Scholar]
  95. Weli S. C., Tryland M.. ( 2011;). Avipoxviruses: infection biology and their use as vaccine vectors. Virol J8:49 [CrossRef][PubMed]
    [Google Scholar]
  96. Wells J. M., Mercenier A.. ( 2008;). Mucosal delivery of therapeutic and prophylactic molecules using lactic acid bacteria. Nat Rev Microbiol6:349–362 [CrossRef][PubMed]
    [Google Scholar]
  97. Weyer J., Rupprecht C. E., Nel L. H.. ( 2009;). Poxvirus-vectored vaccines for rabies—a review. Vaccine27:7198–7201 [CrossRef][PubMed]
    [Google Scholar]
  98. Whitney J. B., Mirshahidi S., Lim S. Y., Goins L., Ibegbu C. C., Anderson D. C., Raybourne R. B., Frankel F. R., Lieberman J., Ruprecht R. M.. ( 2011;). Prior exposure to an attenuated Listeria vaccine does not reduce immunogenicity: pre-clinical assessment of the efficacy of a Listeria vaccine in the induction of immune responses against HIV. J Immune Based Ther Vaccines9:2 [CrossRef][PubMed]
    [Google Scholar]
  99. Whittle B. L., Verma N. K.. ( 1997;). The immune response to a B-cell epitope delivered by Salmonella is enhanced by prior immunological experience. Vaccine15:1737–1740 [CrossRef][PubMed]
    [Google Scholar]
  100. Xiang Z. Q., Gao G. P., Reyes-Sandoval A., Li Y., Wilson J. M., Ertl H. C.. ( 2003;). Oral vaccination of mice with adenoviral vectors is not impaired by preexisting immunity to the vaccine carrier. J Virol77:10780–10789 [CrossRef][PubMed]
    [Google Scholar]
  101. Yin Y., Tian D., Jiao H., Zhang C., Pan Z., Zhang X., Wang X., Jiao X.. ( 2011;). Pathogenicity and immunogenicity of a mutant strain of Listeria monocytogenes in the chicken infection model. Clin Vaccine Immunol18:500–505 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.049601-0
Loading
/content/journal/micro/10.1099/mic.0.049601-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error