1887

Abstract

The evolution of antibiotic resistance in pathogenic bacteria is a growing global health problem which is gradually making the treatment of infectious diseases less efficient. Antimicrobial peptides are small charged molecules found in organisms from the complete phylogenetic spectrum. The peptides are attractive candidates for novel drug development due to their activity against bacteria that are resistant to conventional antibiotics, and reports of peptide resistance are rare in the clinical setting. Paradoxically, many clinically relevant bacteria have mechanisms that can recognize and respond to the presence of cationic antimicrobial peptides (CAMPs) in the environment by changing the properties of the microbial surface thereby increasing the tolerance of the microbes towards the peptides. In an essential component of this inducible tolerance mechanism is the lipopolysaccharide modification operon –PA3559 which encodes enzymes required for LPS alterations leading to increased antimicrobial peptide tolerance. The expression of the operon is induced by the presence of CAMPs in the environment but the molecular mechanisms underlying the cellular recognition of the peptides are poorly elucidated. In this work, we investigate the factors influencing expression by transposon mutagenesis and promoter green fluorescent protein reporters. We have identified a novel gene encoding a Mig-14-like protein that is required for recognition of the CAMPs colistin and Novispirin G10 by . Moreover, we show that this gene is also required for the formation of CAMP-tolerant subpopulations in hydrodynamic flow chamber biofilms.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.049445-0
2011-09-01
2020-01-17
Loading full text...

Full text loading...

/deliver/fulltext/micro/157/9/2647.html?itemId=/content/journal/micro/10.1099/mic.0.049445-0&mimeType=html&fmt=ahah

References

  1. Ausubel F. M., Brent M. R., Kingston R. E., Moore D. D., Siedman J. G., Smith J. A., Struhl K.. ( 1996;). Current Protocols in Molecular Biology New York: Wiley;
    [Google Scholar]
  2. Bader M. W., Sanowar S., Daley M. E., Schneider A. R., Cho U., Xu W., Klevit R. E., Le Moual H., Miller S. I.. ( 2005;). Recognition of antimicrobial peptides by a bacterial sensor kinase. Cell122:461–472 [CrossRef][PubMed]
    [Google Scholar]
  3. Bailey J., Manoil C.. ( 2002;). Genome-wide internal tagging of bacterial exported proteins. Nat Biotechnol20:839–842[PubMed][CrossRef]
    [Google Scholar]
  4. Bollenbach T., Quan S., Chait R., Kishony R.. ( 2009;). Nonoptimal microbial response to antibiotics underlies suppressive drug interactions. Cell139:707–718 [CrossRef][PubMed]
    [Google Scholar]
  5. Breazeale S. D., Ribeiro A. A., Raetz C. R.. ( 2002;). Oxidative decarboxylation of UDP-glucuronic acid in extracts of polymyxin-resistant Escherichia coli. Origin of lipid A species modified with 4-amino-4-deoxy-l-arabinose. J Biol Chem277:2886–2896 [CrossRef][PubMed]
    [Google Scholar]
  6. Breazeale S. D., Ribeiro A. A., Raetz C. R.. ( 2003;). Origin of lipid A species modified with 4-amino-4-deoxy-l-arabinose in polymyxin-resistant mutants of Escherichia coli. An aminotransferase (ArnB) that generates UDP-4-deoxy-l-arabinose. J Biol Chem278:24731–24739 [CrossRef][PubMed]
    [Google Scholar]
  7. Breukink E., Wiedemann I., van Kraaij C., Kuipers O. P., Sahl H., de Kruijff B.. ( 1999;). Use of the cell wall precursor lipid II by a pore-forming peptide antibiotic. Science286:2361–2364 [CrossRef][PubMed]
    [Google Scholar]
  8. Brodsky I. E., Ernst R. K., Miller S. I., Falkow S.. ( 2002;). mig-14 is a Salmonella gene that plays a role in bacterial resistance to antimicrobial peptides. J Bacteriol184:3203–3213 [CrossRef][PubMed]
    [Google Scholar]
  9. Brodsky I. E., Ghori N., Falkow S., Monack D.. ( 2005;). Mig-14 is an inner membrane-associated protein that promotes Salmonella typhimurium resistance to CRAMP, survival within activated macrophages and persistent infection. Mol Microbiol55:954–972 [CrossRef][PubMed]
    [Google Scholar]
  10. Brogden K. A.. ( 2005;). Antimicrobial peptides: pore formers or metabolic inhibitors in bacteria?. Nat Rev Microbiol3:238–250 [CrossRef][PubMed]
    [Google Scholar]
  11. Brötz H., Bierbaum G., Leopold K., Reynolds P. E., Sahl H. G.. ( 1998;). The lantibiotic mersacidin inhibits peptidoglycan synthesis by targeting lipid II. Antimicrob Agents Chemother42:154–160[PubMed]
    [Google Scholar]
  12. Ceri H., Olson M. E., Stremick C., Read R. R., Morck D., Buret A.. ( 1999;). The Calgary Biofilm Device: new technology for rapid determination of antibiotic susceptibilities of bacterial biofilms. J Clin Microbiol37:1771–1776[PubMed]
    [Google Scholar]
  13. Choi K. H., Schweizer H. P.. ( 2005;). An improved method for rapid generation of unmarked Pseudomonas aeruginosa deletion mutants. BMC Microbiol5:30 [CrossRef][PubMed]
    [Google Scholar]
  14. Christensen B. B., Sternberg C., Andersen J. B., Palmer R. J. Jr, Nielsen A. T., Givskov M., Molin S.. ( 1999;). Molecular tools for study of biofilm physiology. Methods Enzymol310:20–42 [CrossRef][PubMed]
    [Google Scholar]
  15. Clark D. J., Maaloe O.. ( 1967;). DNA replication and division cycle in Escherichia coli . J Mol Biol23:99–112 [CrossRef]
    [Google Scholar]
  16. Conly J., Johnston B.. ( 2006;). Colistin: the phoenix arises. Can J Infect Dis Med Microbiol17:267–269[PubMed]
    [Google Scholar]
  17. Conrad R. S., Galanos C.. ( 1989;). Fatty acid alterations and polymyxin B binding by lipopolysaccharides from Pseudomonas aeruginosa adapted to polymyxin B resistance. Antimicrob Agents Chemother33:1724–1728[PubMed][CrossRef]
    [Google Scholar]
  18. Ernst R. K., Yi E. C., Guo L., Lim K. B., Burns J. L., Hackett M., Miller S. I.. ( 1999;). Specific lipopolysaccharide found in cystic fibrosis airway Pseudomonas aeruginosa . Science286:1561–1565 [CrossRef][PubMed]
    [Google Scholar]
  19. Fernández L., Gooderham W. J., Bains M., McPhee J. B., Wiegand I., Hancock R. E.. ( 2010;). Adaptive resistance to the “last hope” antibiotics polymyxin B and colistin in Pseudomonas aeruginosa is mediated by the novel two-component regulatory system ParR–ParS. Antimicrob Agents Chemother54:3372–3382 [CrossRef][PubMed]
    [Google Scholar]
  20. Folkesson A., Haagensen J. A., Zampaloni C., Sternberg C., Molin S.. ( 2008;). Biofilm induced tolerance towards antimicrobial peptides. PLoS ONE3:e1891 [CrossRef][PubMed]
    [Google Scholar]
  21. Frederiksen B., Koch C., Høiby N.. ( 1997;). Antibiotic treatment of initial colonization with Pseudomonas aeruginosa postpones chronic infection and prevents deterioration of pulmonary function in cystic fibrosis. Pediatr Pulmonol23:330–335 [CrossRef][PubMed]
    [Google Scholar]
  22. Gilleland H. E. Jr, Stinnett J. D., Eagon R. G.. ( 1974;). Ultrastructural and chemical alteration of the cell envelope of Pseudomonas aeruginosa, associated with resistance to ethylenediaminetetraacetate resulting from growth in a Mg2+-deficient medium. J Bacteriol117:302–311[PubMed]
    [Google Scholar]
  23. Gunn J. S.. ( 2001;). Bacterial modification of LPS and resistance to antimicrobial peptides. J Endotoxin Res7:57–62[PubMed][CrossRef]
    [Google Scholar]
  24. Gunn J. S., Lim K. B., Krueger J., Kim K., Guo L., Hackett M., Miller S. I.. ( 1998;). PmrA–PmrB-regulated genes necessary for 4-aminoarabinose lipid A modification and polymyxin resistance. Mol Microbiol27:1171–1182 [CrossRef][PubMed]
    [Google Scholar]
  25. Haagensen J. A., Klausen M., Ernst R. K., Miller S. I., Folkesson A., Tolker-Nielsen T., Molin S.. ( 2007;). Differentiation and distribution of colistin- and sodium dodecyl sulfate-tolerant cells in Pseudomonas aeruginosa biofilms. J Bacteriol189:28–37 [CrossRef][PubMed]
    [Google Scholar]
  26. Hiemstra P. S., Fernie-King B. A., McMichael J., Lachmann P. J., Sallenave J. M.. ( 2004;). Antimicrobial peptides: mediators of innate immunity as templates for the development of novel anti-infective and immune therapeutics. Curr Pharm Des10:2891–2905 [CrossRef][PubMed]
    [Google Scholar]
  27. Hoeprich P. D.. ( 1970;). The polymyxins. Med Clin North Am54:1257–1265[PubMed]
    [Google Scholar]
  28. Høiby N., Krogh Johansen H., Moser C., Song Z., Ciofu O., Kharazmi A.. ( 2001;). Pseudomonas aeruginosa and the in vitro and in vivo biofilm mode of growth. Microbes Infect3:23–35 [CrossRef][PubMed]
    [Google Scholar]
  29. Jacobs M. A., Alwood A., Thaipisuttikul I., Spencer D., Haugen E., Ernst S., Will O., Kaul R., Raymond C. et al. ( 2003;). Comprehensive transposon mutant library of Pseudomonas aeruginosa . Proc Natl Acad Sci U S A100:14339–14344 [CrossRef][PubMed]
    [Google Scholar]
  30. Khandelia H., Kaznessis Y. N.. ( 2005;). Molecular dynamics simulations of helical antimicrobial peptides in SDS micelles: what do point mutations achieve?. Peptides26:2037–2049 [CrossRef][PubMed]
    [Google Scholar]
  31. King J. D., Kocíncová D., Westman E. L., Lam J. S.. ( 2009;). Review: lipopolysaccharide biosynthesis in Pseudomonas aeruginosa . Innate Immun15:261–312 [CrossRef][PubMed]
    [Google Scholar]
  32. Koch B., Jensen L. E., Nybroe O.. ( 2001;). A panel of Tn7-based vectors for insertion of the GFP marker gene or for delivery of cloned DNA into Gram-negative bacteria at a neutral chromosomal site. J Microbiol Methods45:187–195 [CrossRef][PubMed]
    [Google Scholar]
  33. Lam J., Matewish M., Poon K. K. H.. ( 2004;). Lipopolysaccharides of Pseudomonas aeruginosa . Pseudomonasvol. 3 Biosynthesis of Macromolecules and Molecular Metabolism341–361 Ramos J. L..
    [Google Scholar]
  34. Lambertsen L., Sternberg C., Molin S.. ( 2004;). Mini-Tn7 transposons for site-specific tagging of bacteria with fluorescent proteins. Environ Microbiol6:726–732 [CrossRef][PubMed]
    [Google Scholar]
  35. Landman D., Georgescu C., Martin D. A., Quale J.. ( 2008;). Polymyxins revisited. Clin Microbiol Rev21:449–465 [CrossRef][PubMed]
    [Google Scholar]
  36. Littlewood J. M., Miller M. G., Ghoneim A. T., Ramsden C. H.. ( 1985;). Nebulised colomycin for early pseudomonas colonisation in cystic fibrosis. Lancet325:865 [CrossRef][PubMed]
    [Google Scholar]
  37. Manoil C.. ( 2000;). Tagging exported proteins using Escherichia coli alkaline phosphatase gene fusions. Methods Enzymol326:35–47 [CrossRef][PubMed]
    [Google Scholar]
  38. Matewish M. ( 2004;). The functional role of lipopolysaccharide in the cell envelope and surface proteins of Pseudomonas aeruginosa .
  39. McPhee J. B., Lewenza S., Hancock R. E.. ( 2003;). Cationic antimicrobial peptides activate a two-component regulatory system, PmrA–PmrB, that regulates resistance to polymyxin B and cationic antimicrobial peptides in Pseudomonas aeruginosa . Mol Microbiol50:205–217 [CrossRef][PubMed]
    [Google Scholar]
  40. Moskowitz S. M., Ernst R. K., Miller S. I.. ( 2004;). PmrAB, a two-component regulatory system of Pseudomonas aeruginosa that modulates resistance to cationic antimicrobial peptides and addition of aminoarabinose to lipid A. J Bacteriol186:575–579 [CrossRef][PubMed]
    [Google Scholar]
  41. Nickel J. C., Ruseska I., Wright J. B., Costerton J. W.. ( 1985;). Tobramycin resistance of Pseudomonas aeruginosa cells growing as a biofilm on urinary catheter material. Antimicrob Agents Chemother27:619–624[PubMed][CrossRef]
    [Google Scholar]
  42. Pamp S. J., Gjermansen M., Johansen H. K., Tolker-Nielsen T.. ( 2008;). Tolerance to the antimicrobial peptide colistin in Pseudomonas aeruginosa biofilms is linked to metabolically active cells, and depends on the pmr and mexABoprM genes. Mol Microbiol68:223–240 [CrossRef][PubMed]
    [Google Scholar]
  43. Perron G. G., Zasloff M., Bell G.. ( 2006;). Experimental evolution of resistance to an antimicrobial peptide. Proc Biol Sci273:251–256 [CrossRef][PubMed]
    [Google Scholar]
  44. Prince A. S.. ( 2002;). Biofilms, antimicrobial resistance, and airway infection. N Engl J Med347:1110–1111 [CrossRef][PubMed]
    [Google Scholar]
  45. Sawai M. V., Waring A. J., Kearney W. R., McCray P. B. Jr, Forsyth W. R., Lehrer R. I., Tack B. F.. ( 2002;). Impact of single-residue mutations on the structure and function of ovispirin/novispirin antimicrobial peptides. Protein Eng15:225–232 [CrossRef][PubMed]
    [Google Scholar]
  46. Schneider T., Kruse T., Wimmer R., Wiedemann I., Sass V., Pag U., Jansen A., Nielsen A. K., Mygind P. H. et al. ( 2010;). Plectasin, a fungal defensin, targets the bacterial cell wall precursor Lipid II. Science328:1168–1172 [CrossRef][PubMed]
    [Google Scholar]
  47. Southward C. M., Surette M. G.. ( 2002;). The dynamic microbe: green fluorescent protein brings bacteria to light. Mol Microbiol45:1191–1196 [CrossRef][PubMed]
    [Google Scholar]
  48. Srinivas N., Jetter P., Ueberbacher B. J., Werneburg M., Zerbe K., Steinmann J., Van der Meijden B., Bernardini F., Lederer A. et al. ( 2010;). Peptidomimetic antibiotics target outer-membrane biogenesis in Pseudomonas aeruginosa . Science327:1010–1013 [CrossRef][PubMed]
    [Google Scholar]
  49. Steinstraesser L., Tack B. F., Waring A. J., Hong T., Boo L. M., Fan M. H., Remick D. I., Su G. L., Lehrer R. I., Wang S. C.. ( 2002;). Activity of novispirin G10 against Pseudomonas aeruginosa in vitro and in infected burns. Antimicrob Agents Chemother46:1837–1844 [CrossRef][PubMed]
    [Google Scholar]
  50. Storm D. R., Rosenthal K. S., Swanson P. E.. ( 1977;). Polymyxin and related peptide antibiotics. Annu Rev Biochem46:723–763 [CrossRef][PubMed]
    [Google Scholar]
  51. Travis S. M., Anderson N. N., Forsyth W. R., Espiritu C., Conway B. D., Greenberg E. P., McCray P. B. Jr, Lehrer R. I., Welsh M. J., Tack B. F.. ( 2000;). Bactericidal activity of mammalian cathelicidin-derived peptides. Infect Immun68:2748–2755 [CrossRef][PubMed]
    [Google Scholar]
  52. Trent M. S., Ribeiro A. A., Doerrler W. T., Lin S., Cotter R. J., Raetz C. R.. ( 2001;). Accumulation of a polyisoprene-linked amino sugar in polymyxin-resistant Salmonella typhimurium and Escherichia coli: structural characterization and transfer to lipid A in the periplasm. J Biol Chem276:43132–43144 [CrossRef][PubMed]
    [Google Scholar]
  53. Vaara M., Vaara T., Jensen M., Helander I., Nurminen M., Rietschel E. T., Mäkelä P. H.. ( 1981;). Characterization of the lipopolysaccharide from the polymyxin-resistant pmrA mutants of Salmonella typhimurium . FEBS Lett129:145–149 [CrossRef][PubMed]
    [Google Scholar]
  54. Valdivia R. H., Cirillo D. M., Lee A. K., Bouley D. M., Falkow S.. ( 2000;). mig-14 is a horizontally acquired, host-induced gene required for Salmonella enterica lethal infection in the murine model of typhoid fever. Infect Immun68:7126–7131 [CrossRef][PubMed]
    [Google Scholar]
  55. Winfield M. D., Groisman E. A.. ( 2004;). Phenotypic differences between Salmonella and Escherichia coli resulting from the disparate regulation of homologous genes. Proc Natl Acad Sci U S A101:17162–17167 [CrossRef][PubMed]
    [Google Scholar]
  56. Winsor G. L., Van Rossum T., Lo R., Khaira B., Whiteside M. D., Hancock R. E., Brinkman F. S.. ( 2009;). Pseudomonas Genome Database: facilitating user-friendly, comprehensive comparisons of microbial genomes. Nucleic Acids Res37:Database issueD483–D488 [CrossRef][PubMed]
    [Google Scholar]
  57. Zaslaver A., Bren A., Ronen M., Itzkovitz S., Kikoin I., Shavit S., Liebermeister W., Surette M. G., Alon U.. ( 2006;). A comprehensive library of fluorescent transcriptional reporters for Escherichia coli . Nat Methods3:623–628 [CrossRef][PubMed]
    [Google Scholar]
  58. Zasloff M.. ( 2002;). Antimicrobial peptides of multicellular organisms. Nature415:389–395 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.049445-0
Loading
/content/journal/micro/10.1099/mic.0.049445-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error