1887

Abstract

shows extraordinary tolerance to DNA damage, and exhibits differential gene expression and protein recycling. A putative response regulator, the DRB0091 (RadR) ORF, was identified from a pool of DNA-binding proteins induced in response to gamma radiation in this bacterium. is located upstream of , which encodes a putative sensor histidine kinase (RadS) on the megaplasmid. Deletion of these genes both individually and together resulted in hypersensitivity to DNA-damaging agents and a delayed or altered double-strand break repair. A Δ double mutant and a Δ single mutant showed nearly identical responses to gamma radiation and UVC. Wild-type RadR and RadS complemented the corresponding mutant strains, but also exhibited significant cross-complementation, albeit at lower doses of gamma radiation. The transcript was not detected in the Δ mutant, suggesting the existence of a operon. Recombinant RadS was autophosphorylated and could catalyse the transfer of γ phosphate from ATP to RadR . These results indicated the functional interaction of RadS and RadR, and suggested a role for the RadS/RadR two-component system in the radiation resistance of this bacterium.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.049361-0
2011-10-01
2019-10-20
Loading full text...

Full text loading...

/deliver/fulltext/micro/157/10/2974.html?itemId=/content/journal/micro/10.1099/mic.0.049361-0&mimeType=html&fmt=ahah

References

  1. Appleby J. L., Parkinson J. S., Bourret R. B.. ( 1996;). Signal transduction via the multi-step phosphorelay: not necessarily a road less traveled. . Cell 86:, 845–848. [CrossRef][PubMed]
    [Google Scholar]
  2. Aravind L., Koonin E. V.. ( 1999;). DNA polymerase β-like nucleotidyltransferase superfamily: identification of three new families, classification and evolutionary history. . Nucleic Acids Res 27:, 1609–1618. [CrossRef][PubMed]
    [Google Scholar]
  3. Bagwell C. E., Milliken C. E., Ghoshroy S., Blom D. A.. ( 2008;). Intracellular copper accumulation enhances the growth of Kineococcus radiotolerans during chronic irradiation. . Appl Environ Microbiol 74:, 1376–1384. [CrossRef][PubMed]
    [Google Scholar]
  4. Battista J. R., Park M. J., McLemore A. E.. ( 2001;). Inactivation of two homologues of proteins presumed to be involved in the desiccation tolerance of plants sensitizes Deinococcus radiodurans R1 to desiccation. . Cryobiology 43:, 133–139. [CrossRef][PubMed]
    [Google Scholar]
  5. Blasius M., Sommer S., Hübscher U.. ( 2008;). Deinococcus radiodurans: what belongs to the survival kit?. Crit Rev Biochem Mol Biol 43:, 221–238. [CrossRef][PubMed]
    [Google Scholar]
  6. Bonacossa de Almeida C., Coste G., Sommer S., Bailone A.. ( 2002;). Quantification of RecA protein in Deinococcus radiodurans reveals involvement of RecA, but not LexA, in its regulation. . Mol Genet Genomics 268:, 28–41. [CrossRef][PubMed]
    [Google Scholar]
  7. Cox M. M., Battista J. R.. ( 2005;). Deinococcus radiodurans – the consummate survivor. . Nat Rev Microbiol 3:, 882–892. [CrossRef][PubMed]
    [Google Scholar]
  8. Daly M. J., Minton K. W.. ( 1996;). An alternative pathway of recombination of chromosomal fragments precedes recA-dependent recombination in the radioresistant bacterium Deinococcus radiodurans. . J Bacteriol 178:, 4461–4471.[PubMed]
    [Google Scholar]
  9. Daly M. J., Ouyang L., Fuchs P., Minton K. W.. ( 1994;). In vivo damage and recA-dependent repair of plasmid and chromosomal DNA in the radiation-resistant bacterium Deinococcus radiodurans. . J Bacteriol 176:, 3508–3517.[PubMed]
    [Google Scholar]
  10. Ghosal D. M., Omelchenko M. V., Gaidamakova E. K., Matrosova V. Y., Vasilenko A., Venkateswaran A., Zhai M., Kostandarithes H. M., Brim H. et al. & other authors ( 2005;). How radiation kills cells: survival of Deinococcus radiodurans and Shewanella oneidensis under oxidative stress. . FEMS Microbiol Rev 29:, 361–375.[PubMed]
    [Google Scholar]
  11. Hickman A. B., James J. A., Barabas O., Pasternak C., Ton-Hoang B., Chandler M., Sommer S., Dyda F.. ( 2010;). DNA recognition and the precleavage state during single-stranded DNA transposition in D. radiodurans. . EMBO J 29:, 3840–3852. [CrossRef][PubMed]
    [Google Scholar]
  12. Inouye M., Dutta R.. ( 2003;). Histidine Kinases in Signal Transduction. San Diego, CA:: Academic Press;.
    [Google Scholar]
  13. Joshi B., Schmid R., Altendorf K., Apte S. K.. ( 2004;). Protein recycling is a major component of post-irradiation recovery in Deinococcus radiodurans strain R1. . Biochem Biophys Res Commun 320:, 1112–1117. [CrossRef][PubMed]
    [Google Scholar]
  14. Kamble V. A., Rajpurohit Y. S., Srivastava A. K., Misra H. S.. ( 2010;). Increased synthesis of signaling molecules coincides with reversible inhibition of nucleolytic activity during postirradiation recovery of Deinococcus radiodurans. . FEMS Microbiol Lett 303:, 18–25. [CrossRef][PubMed]
    [Google Scholar]
  15. Khairnar N. P., Kamble V. A., Mangoli S. H., Apte S. K., Misra H. S.. ( 2007;). Involvement of a periplasmic protein kinase in DNA strand break repair and homologous recombination in Escherichia coli. . Mol Microbiol 65:, 294–304. [CrossRef][PubMed]
    [Google Scholar]
  16. Khairnar N. P., Kamble V. A., Misra H. S.. ( 2008;). RecBC enzyme overproduction affects UV and gamma radiation survival of Deinococcus radiodurans. . DNA Repair (Amst) 7:, 40–47. [CrossRef][PubMed]
    [Google Scholar]
  17. Kim D., Forst S.. ( 2001;). Genomic analysis of the histidine kinase family in bacteria and archaea. . Microbiology 147:, 1197–1212.[PubMed]
    [Google Scholar]
  18. Kota S., Misra H. S.. ( 2006;). PprA: a protein implicated in radioresistance of Deinococcus radiodurans stimulates catalase activity in Escherichia coli. . Appl Microbiol Biotechnol 72:, 790–796. [CrossRef][PubMed]
    [Google Scholar]
  19. Kota S., Misra H. S.. ( 2008;). Identification of a DNA processing complex from Deinococcus radiodurans. . Biochem Cell Biol 86:, 448–458. [CrossRef][PubMed]
    [Google Scholar]
  20. Lavin M. F., Kozlov S.. ( 2007;). ATM activation and DNA damage response. . Cell Cycle 6:, 931–942. [CrossRef][PubMed]
    [Google Scholar]
  21. Leonard C. J., Aravind L., Koonin E. V.. ( 1998;). Novel families of putative protein kinases in bacteria and archaea: evolution of the “eukaryotic” protein kinase superfamily. . Genome Res 8:, 1038–1047.[PubMed]
    [Google Scholar]
  22. Liu Y., Zhou J., Omelchenko M. V., Beliaev A. S., Venkateswaran A., Stair J., Wu L., Thompson D. K., Xu D. et al. & other authors ( 2003;). Transcriptome dynamics of Deinococcus radiodurans recovering from ionizing radiation. . Proc Natl Acad Sci U S A 100:, 4191–4196. [CrossRef][PubMed]
    [Google Scholar]
  23. Makarova K. S., Aravind L., Wolf Y. I., Tatusov R. L., Minton K. W., Koonin E. V., Daly M. J.. ( 2001;). Genome of the extremely radiation-resistant bacterium Deinococcus radiodurans viewed from the perspective of comparative genomics. . Microbiol Mol Biol Rev 65:, 44–79. [CrossRef][PubMed]
    [Google Scholar]
  24. Markillie L. M., Varnum S. M., Hradecky P., Wong K. K.. ( 1999;). Targeted mutagenesis by duplication insertion in the radioresistant bacterium Deinococcus radiodurans: radiation sensitivities of catalase (katA) and superoxide dismutase (sodA) mutants. . J Bacteriol 181:, 666–669.[PubMed]
    [Google Scholar]
  25. Mascher T., Helmann J. D., Unden G.. ( 2006;). Stimulus perception in bacterial signal-transducing histidine kinases. . Microbiol Mol Biol Rev 70:, 910–938. [CrossRef][PubMed]
    [Google Scholar]
  26. Mattimore V., Battista J. R.. ( 1996;). Radioresistance of Deinococcus radiodurans: functions necessary to survive ionizing radiation are also necessary to survive prolonged desiccation. . J Bacteriol 178:, 633–637.[PubMed]
    [Google Scholar]
  27. Meima R., Rothfuss H. M., Gewin L., Lidstrom M. E.. ( 2001;). Promoter cloning in the radioresistant bacterium Deinococcus radiodurans. . J Bacteriol 183:, 3169–3175. [CrossRef][PubMed]
    [Google Scholar]
  28. Mijakovic I., Petranovic D., Macek B., Cepo T., Mann M., Davies J., Jensen P. R., Vujaklija D.. ( 2006;). Bacterial single-stranded DNA-binding proteins are phosphorylated on tyrosine. . Nucleic Acids Res 34:, 1588–1596. [CrossRef][PubMed]
    [Google Scholar]
  29. Misra H. S., Pandey P. K., Modak M. J., Vinayak R., Pandey V. N.. ( 1998;). Polyamide nucleic acid–DNA chimera lacking the phosphate backbone are novel primers for polymerase reaction catalyzed by DNA polymerases. . Biochemistry 37:, 1917–1925. [CrossRef][PubMed]
    [Google Scholar]
  30. Misra H. S., Khairnar N. P., Kota S., Shrivastava S., Joshi V. P., Apte S. K.. ( 2006;). An exonuclease I-sensitive DNA repair pathway in Deinococcus radiodurans: a major determinant of radiation resistance. . Mol Microbiol 59:, 1308–1316. [CrossRef][PubMed]
    [Google Scholar]
  31. Narumi I., Satoh K., Kikuchi M., Funayama T., Yanagisawa T., Kobayashi Y., Watanabe H., Yamamoto K.. ( 2001;). The LexA protein from Deinococcus radiodurans is not involved in RecA induction following gamma irradiation. . J Bacteriol 183:, 6951–6956. [CrossRef][PubMed]
    [Google Scholar]
  32. Oshima T., Aiba H., Masuda Y., Kanaya S., Sugiura M., Wanner B. L., Mori H., Mizuno T.. ( 2002;). Transcriptome analysis of all two-component regulatory system mutants of Escherichia coli K-12. . Mol Microbiol 46:, 281–291. [CrossRef][PubMed]
    [Google Scholar]
  33. Parkinson J. S.. ( 1993;). Signal transduction schemes of bacteria. . Cell 73:, 857–871. [CrossRef][PubMed]
    [Google Scholar]
  34. Rajpurohit Y. S., Misra H. S.. ( 2010;). Characterization of a DNA damage-inducible membrane protein kinase from Deinococcus radiodurans and its role in bacterial radioresistance and DNA strand break repair. . Mol Microbiol 77:, 1470–1482. [CrossRef][PubMed]
    [Google Scholar]
  35. Rajpurohit Y. S., Gopalakrishnan R., Misra H. S.. ( 2008;). Involvement of a protein kinase activity inducer in DNA double strand break repair and radioresistance of Deinococcus radiodurans. . J Bacteriol 190:, 3948–3954. [CrossRef][PubMed]
    [Google Scholar]
  36. Rensing C., Grass G.. ( 2003;). Escherichia coli mechanisms of copper homeostasis in a changing environment. . FEMS Microbiol Rev 27:, 197–213. [CrossRef][PubMed]
    [Google Scholar]
  37. Repar J., Cvjetan S., Slade D., Radman M., Zahradka D., Zahradka K.. ( 2010;). RecA protein assures fidelity of DNA repair and genome stability in Deinococcus radiodurans. . DNA Repair (Amst) 9:, 1151–1161. [CrossRef][PubMed]
    [Google Scholar]
  38. Sambrook J., Russell D. W.. ( 2001;). Molecular Cloning: a Laboratory Manual, , 3rd edn.. Cold Spring Harbor, NY:: Cold Spring Harbor Laboratory;.
    [Google Scholar]
  39. Sancar A., Lindsey-Boltz L. A., Unsal-Kaçmaz K., Linn S.. ( 2004;). Molecular mechanisms of mammalian DNA repair and the DNA damage checkpoints. . Annu Rev Biochem 73:, 39–85. [CrossRef][PubMed]
    [Google Scholar]
  40. Shashidhar R., Kumar S. A., Misra H. S., Bandekar J. R.. ( 2010;). Evaluation of the role of enzymatic and nonenzymatic antioxidant systems in the radiation resistance of Deinococcus. . Can J Microbiol 56:, 195–201. [CrossRef][PubMed]
    [Google Scholar]
  41. Shimoni Y., Altuvia S., Margalit H., Biham O.. ( 2009;). Stochastic analysis of the SOS response in Escherichia coli. . PLoS ONE 4:, e5363. [CrossRef][PubMed]
    [Google Scholar]
  42. Shrivastava R., Ghosh A. K., Das A. K.. ( 2007;). Probing the nucleotide binding and phosphorylation by the histidine kinase of a novel three-protein two-component system from Mycobacterium tuberculosis. . FEBS Lett 581:, 1903–1909. [CrossRef][PubMed]
    [Google Scholar]
  43. Slade D., Radman M.. ( 2011;). Oxidative stress resistance in Deinococcus radiodurans. . Microbiol Mol Biol Rev 75:, 133–191. [CrossRef][PubMed]
    [Google Scholar]
  44. Slade D., Lindner A. B., Paul G., Radman M.. ( 2009;). Recombination and replication in DNA repair of heavily irradiated Deinococcus radiodurans. . Cell 136:, 1044–1055. [CrossRef][PubMed]
    [Google Scholar]
  45. Tanaka M., Earl A. M., Howell H. A., Park M. J., Eisen J. A., Peterson S. N., Battista J. R.. ( 2004;). Analysis of Deinococcus radiodurans’s transcriptional response to ionizing radiation and desiccation reveals novel proteins that contribute to extreme radioresistance. . Genetics 168:, 21–33. [CrossRef][PubMed]
    [Google Scholar]
  46. Walker G. C.. ( 1996;). The SOS response of Escherichia coli. . In Escherichia coli and Salmonella: Cellular and Molecular Biology, , 2nd edn., pp. 1400–1416. Edited by Neidhardt F. C. et al.. Washington, DC:: American Society for Microbiology;.
    [Google Scholar]
  47. Wang L., Xu G., Chen H., Zhao Y., Xu N., Tian B., Hua Y.. ( 2008;). DrRRA: a novel response regulator essential for the extreme radioresistance of Deinococcus radiodurans. . Mol Microbiol 67:, 1211–1222. [CrossRef][PubMed]
    [Google Scholar]
  48. White O., Eisen J. A., Heidelberg J. F., Hickey E. K., Peterson J. D., Dodson R. J., Haft D. H., Gwinn M. L., Nelson W. C. et al. & other authors ( 1999;). Genome sequence of the radioresistant bacterium Deinococcus radiodurans R1. . Science 286:, 1571–1577. [CrossRef][PubMed]
    [Google Scholar]
  49. Zahradka K., Slade D., Bailone A., Sommer S., Averbeck D., Petranovic M., Lindner A. B., Radman M.. ( 2006;). Reassembly of shattered chromosomes in Deinococcus radiodurans. . Nature 443:, 569–573.[PubMed]
    [Google Scholar]
  50. Zhou B. B., Elledge S. J.. ( 2000;). The DNA damage response: putting checkpoints in perspective. . Nature 408:, 433–439. [CrossRef][PubMed]
    [Google Scholar]
  51. Zhou L., Lei X. H., Bochner B. R., Wanner B. L.. ( 2003;). Phenotype microarray analysis of Escherichia coli K-12 mutants with deletions of all two-component systems. . J Bacteriol 185:, 4956–4972. [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.049361-0
Loading
/content/journal/micro/10.1099/mic.0.049361-0
Loading

Data & Media loading...

Supplements

List of primers used in this study [PDF](53 KB)

PDF

[PDF](12 KB)

PDF

[PDF](119 KB)

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error