1887

Abstract

Preliminary screening of the Malagasy plant for compounds attenuating the production of quorum sensing (QS)-controlled virulence factors in bacteria led to the identification of active fractions containing flavonoids. In the present study, several flavonoids belonging to the flavone, flavanone, flavonol and chalcone structural groups were screened for their capacity to reduce the production of QS-controlled factors in the opportunistic pathogen (strain PAO1). Flavanones (i.e. naringenin, eriodictyol and taxifolin) significantly reduced the production of pyocyanin and elastase in without affecting bacterial growth. Consistently, naringenin and taxifolin reduced the expression of several QS-controlled genes (i.e. , , , , , , and ) in PAO1. Naringenin also dramatically reduced the production of the acylhomoserine lactones -(3-oxododecanoyl)--homoserine lactone (3-oxo-C12-HSL) and -butanoyl--homoserine lactone (C4-HSL), which is driven by the and gene products, respectively. In addition, using mutant strains deficient for autoinduction (Δ and Δ) and LasR- and RhlR-based biosensors, it was shown that QS inhibition by naringenin not only is the consequence of a reduced production of autoinduction compounds but also results from a defect in the proper functioning of the RlhR–C4-HSL complex. Widely distributed in the plant kingdom, flavonoids are known for their numerous and determinant roles in plant physiology, plant development and in the success of plant–rhizobia interactions, but, as shown here, some of them also have a role as inhibitors of the virulence of pathogenic bacteria by interfering with QS mechanisms.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.049338-0
2011-07-01
2020-08-04
Loading full text...

Full text loading...

/deliver/fulltext/micro/157/7/2120.html?itemId=/content/journal/micro/10.1099/mic.0.049338-0&mimeType=html&fmt=ahah

References

  1. Adonizio A., Kong K. F., Mathee K..( 2008;). Inhibition of quorum sensing-controlled virulence factor production in Pseudomonas aeruginosa by South Florida plant extracts. Antimicrob Agents Chemother52:198–203 [CrossRef][PubMed]
    [Google Scholar]
  2. Antunes L. C., Ferreira R. B., Buckner M. M., Finlay B. B..( 2010;). Quorum sensing in bacterial virulence. Microbiology156:2271–2282 [CrossRef][PubMed]
    [Google Scholar]
  3. Bjarnsholt T., Jensen P. O., Rasmussen T. B., Christophersen L., Calum H., Hentzer M., Hougen H. P., Rygaard J., Moser C. et al.( 2005;). Garlic blocks quorum sensing and promotes rapid clearing of pulmonary Pseudomonas aeruginosa infections. Microbiology151:3873–3880 [CrossRef][PubMed]
    [Google Scholar]
  4. Bjarnsholt T., Tolker-Nielsen T., Høiby N., Givskov M..( 2010;). Interference of Pseudomonas aeruginosa signalling and biofilm formation for infection control. Expert Rev Mol Med12:e11 [CrossRef][PubMed]
    [Google Scholar]
  5. Blosser R. S., Gray K. M..( 2000;). Extraction of violacein from Chromobacterium violaceum provides a new quantitative bioassay for N-acyl homoserine lactone autoinducers. J Microbiol Methods40:47–55 [CrossRef][PubMed]
    [Google Scholar]
  6. Brint J. M., Ohman D. E..( 1995;). Synthesis of multiple exoproducts in Pseudomonas aeruginosa is under the control of RhlR-RhlI, another set of regulators in strain PAO1 with homology to the autoinducer-responsive LuxR-LuxI family. J Bacteriol177:7155–7163[PubMed]
    [Google Scholar]
  7. Buer C. S., Imin N., Djordjevic M. A..( 2010;). Flavonoids: new roles for old molecules. J Integr Plant Biol52:98–111 [CrossRef][PubMed]
    [Google Scholar]
  8. Case R. J., Labbate M., Kjelleberg S..( 2008;). AHL-driven quorum-sensing circuits: their frequency and function among the Proteobacteria. ISME J2:345–349 [CrossRef][PubMed]
    [Google Scholar]
  9. Chu W., Vattem D. A., Maitin V., Barnes M. B., McLean R. J..( 2011;). Bioassays of quorum sensing compounds using Agrobacterium tumefaciens and Chromobacterium violaceum. Methods Mol Biol692:3–19 [CrossRef][PubMed]
    [Google Scholar]
  10. Crespo I., García-Mediavilla M. V., Gutiérrez B., Sánchez-Campos S., Tuñón M. J., González-Gallego J..( 2008;). A comparison of the effects of kaempferol and quercetin on cytokine-induced pro-inflammatory status of cultured human endothelial cells. Br J Nutr100:968–976 [CrossRef][PubMed]
    [Google Scholar]
  11. Cushnie T. P., Lamb A. J..( 2005;). Antimicrobial activity of flavonoids. Int J Antimicrob Agents26:343–356 [CrossRef][PubMed]
    [Google Scholar]
  12. Davies D. G., Parsek M. R., Pearson J. P., Iglewski B. H., Costerton J. W., Greenberg E. P..( 1998;). The involvement of cell-to-cell signals in the development of a bacterial biofilm. Science280:295–298 [CrossRef][PubMed]
    [Google Scholar]
  13. Dixon R. A., Pasinetti G. M..( 2010;). Flavonoids and isoflavonoids: from plant biology to agriculture and neuroscience. Plant Physiol154:453–457 [CrossRef][PubMed]
    [Google Scholar]
  14. Dixon R. A., Steele C. L..( 1999;). Flavonoids and isoflavonoids – a gold mine for metabolic engineering. Trends Plant Sci4:394–400 [CrossRef][PubMed]
    [Google Scholar]
  15. Gambello M. J., Iglewski B. H..( 1991;). Cloning and characterization of the Pseudomonas aeruginosa lasR gene, a transcriptional activator of elastase expression. J Bacteriol173:3000–3009[PubMed]
    [Google Scholar]
  16. Gambello M. J., Kaye S., Iglewski B. H..( 1993;). LasR of Pseudomonas aeruginosa is a transcriptional activator of the alkaline protease gene (apr) and an enhancer of exotoxin A expression. Infect Immun61:1180–1184[PubMed]
    [Google Scholar]
  17. Gao M., Teplitski M., Robinson J. B., Bauer W. D..( 2003;). Production of substances by Medicago truncatula that affect bacterial quorum sensing. Mol Plant Microbe Interact16:827–834 [CrossRef][PubMed]
    [Google Scholar]
  18. Givskov M., de Nys R., Manefield M., Gram L., Maximilien R., Eberl L., Molin S., Steinberg P. D., Kjelleberg S..( 1996;). Eukaryotic interference with homoserine lactone-mediated prokaryotic signalling. J Bacteriol178:6618–6622[PubMed]
    [Google Scholar]
  19. González J. E., Keshavan N. D..( 2006;). Messing with bacterial quorum sensing. Microbiol Mol Biol Rev70:859–875 [CrossRef][PubMed]
    [Google Scholar]
  20. Halbwirth H..( 2010;). The creation and physiological relevance of divergent hydroxylation patterns in the flavonoid pathway. Int J Mol Sci11:595–621 [CrossRef][PubMed]
    [Google Scholar]
  21. Hentzer M., Riedel K., Rasmussen T. B., Heydorn A., Andersen J. B., Parsek M. R., Rice S. A., Eberl L., Molin S. et al.( 2002;). Inhibition of quorum sensing in Pseudomonas aeruginosa biofilm bacteria by a halogenated furanone compound. Microbiology148:87–102[PubMed]
    [Google Scholar]
  22. Ishida T., Ikeda T., Takiguchi N., Kuroda A., Ohtake H., Kato J..( 2007;). Inhibition of quorum sensing in Pseudomonas aeruginosa by N-acyl cyclopentylamides. Appl Environ Microbiol73:3183–3188 [CrossRef][PubMed]
    [Google Scholar]
  23. Jacobs M. A., Alwood A., Thaipisuttikul I., Spencer D., Haugen E., Ernst S., Will O., Kaul R., Raymond C. et al.( 2003;). Comprehensive transposon mutant library of Pseudomonas aeruginosa. Proc Natl Acad Sci U S A100:14339–14344 [CrossRef][PubMed]
    [Google Scholar]
  24. Janssens J. C., De Keersmaecker S. C., De Vos D. E., Vanderleyden J..( 2008;). Small molecules for interference with cell-cell-communication systems in Gram-negative bacteria. Curr Med Chem15:2144–2156 [CrossRef][PubMed]
    [Google Scholar]
  25. Jiang Q., Payton-Stewart F., Elliott S., Driver J., Rhodes L. V., Zhang Q., Zheng S., Bhatnagar D., Boue S. M. et al.( 2010;). Effects of 7-O substitutions on estrogenic and anti-estrogenic activities of daidzein analogues in MCF-7 breast cancer cells. J Med Chem53:6153–6163 [CrossRef][PubMed]
    [Google Scholar]
  26. Keshavan N. D., Chowdhary P. K., Haines D. C., González J. E..( 2005;). l-Canavanine made by Medicago sativa interferes with quorum sensing in Sinorhizobium meliloti. J Bacteriol187:8427–8436 [CrossRef][PubMed]
    [Google Scholar]
  27. Kretzschmar U., Khodaverdi V., Jeoung J. H., Görisch H..( 2008;). Function and transcriptional regulation of the isocitrate lyase in Pseudomonas aeruginosa. Arch Microbiol190:151–158 [CrossRef][PubMed]
    [Google Scholar]
  28. Latifi A., Winson M. K., Foglino M., Bycroft B. W., Stewart G. S., Lazdunski A., Williams P..( 1995;). Multiple homologues of LuxR and LuxI control expression of virulence determinants and secondary metabolites through quorum sensing in Pseudomonas aeruginosa PAO1. Mol Microbiol17:333–343 [CrossRef][PubMed]
    [Google Scholar]
  29. Lee S. H., Kim J. Y., Seo G. S., Kim Y. C., Sohn D. H..( 2009;). Isoliquiritigenin, from Dalbergia odorifera, up-regulates anti-inflammatory heme oxygenase-1 expression in RAW264.7 macrophages. Inflamm Res58:257–262 [CrossRef][PubMed]
    [Google Scholar]
  30. Lindsay A., Ahmer B. M. M..( 2005;). Effect of sdiA on biosensors of N-acylhomoserine lactones. J Bacteriol187:5054–5058 [CrossRef][PubMed]
    [Google Scholar]
  31. Liu L., Ma H., Yang N., Tang Y., Guo J., Tao W., Duan J..( 2010;). A series of natural flavonoids as thrombin inhibitors: structure-activity relationships. Thromb Res126:e365–e378 [CrossRef][PubMed]
    [Google Scholar]
  32. Makemson J., Eberhard A., Mathee K..( 2006;). Simple electrospray mass spectrometry detection of acylhomoserine lactones. Luminescence21:1–6 [CrossRef][PubMed]
    [Google Scholar]
  33. Mandal S. M., Chakraborty D., Dey S..( 2010;). Phenolic acids act as signaling molecules in plant-microbe symbioses. Plant Signal Behav5:359–368 [CrossRef][PubMed]
    [Google Scholar]
  34. McClean K. H., Winson M. K., Fish L., Taylor A., Chhabra S. R., Camara M., Daykin M., Lamb J. H., Swift S. et al.( 1997;). Quorum sensing and Chromobacterium violaceum: exploitation of violacein production and inhibition for the detection of N-acylhomoserine lactones. Microbiology143:3703–3711 [CrossRef][PubMed]
    [Google Scholar]
  35. McDougald D., Rice S. A., Kjelleberg S..( 2007;). Bacterial quorum sensing and interference by naturally occurring biomimics. Anal Bioanal Chem387:445–453 [CrossRef][PubMed]
    [Google Scholar]
  36. Müh U., Schuster M., Heim R., Singh A., Olson E. R., Greenberg E. P..( 2006;). Novel Pseudomonas aeruginosa quorum-sensing inhibitors identified in an ultra-high-throughput screen. Antimicrob Agents Chemother50:3674–3679 [CrossRef][PubMed]
    [Google Scholar]
  37. Ng W. L., Bassler B. L..( 2009;). Bacterial quorum-sensing network architectures. Annu Rev Genet43:197–222 [CrossRef][PubMed]
    [Google Scholar]
  38. Njoroge J., Sperandio V..( 2009;). Jamming bacterial communication: new approaches for the treatment of infectious diseases. EMBO Mol Med1:201–210 [CrossRef][PubMed]
    [Google Scholar]
  39. Pearson J. P., Pesci E. C., Iglewski B. H..( 1997;). Roles of Pseudomonas aeruginosa las and rhl quorum-sensing systems in control of elastase and rhamnolipid biosynthesis genes. J Bacteriol179:5756–5767[PubMed]
    [Google Scholar]
  40. Persson T., Hansen T. H., Rasmussen T. B., Skindersø M. E., Givskov M., Nielsen J..( 2005;). Rational design and synthesis of new quorum-sensing inhibitors derived from acylated homoserine lactones and natural products from garlic. Org Biomol Chem3:253–262 [CrossRef][PubMed]
    [Google Scholar]
  41. Pesci E. C., Iglewski B. H..( 1997;). The chain of command in Pseudomonas quorum sensing. Trends Microbiol5:132–134, discussion 134–135 [CrossRef][PubMed]
    [Google Scholar]
  42. Pesci E. C., Pearson J. P., Seed P. C., Iglewski B. H..( 1997;). Regulation of las and rhl quorum sensing in Pseudomonas aeruginosa. J Bacteriol179:3127–3132[PubMed]
    [Google Scholar]
  43. Pesci E. C., Milbank J. B., Pearson J. P., McKnight S., Kende A. S., Greenberg E. P., Iglewski B. H..( 1999;). Quinolone signaling in the cell-to-cell communication system of Pseudomonas aeruginosa. Proc Natl Acad Sci U S A96:11229–11234 [CrossRef][PubMed]
    [Google Scholar]
  44. Pourcel L., Routaboul J. M., Cheynier V., Lepiniec L., Debeaujon I..( 2007;). Flavonoid oxidation in plants: from biochemical properties to physiological functions. Trends Plant Sci12:29–36 [CrossRef][PubMed]
    [Google Scholar]
  45. Rasmussen T. B., Bjarnsholt T., Skindersoe M. E., Hentzer M., Kristoffersen P., Köte M., Nielsen J., Eberl L., Givskov M..( 2005;). Screening for quorum-sensing inhibitors (QSI) by use of a novel genetic system, the QSI selector. J Bacteriol187:1799–1814 [CrossRef][PubMed]
    [Google Scholar]
  46. Rozen S., Skaletsky H..( 2000;). Primer3 on the WWW for general users and for biologist programmers. Methods Mol Biol132:365–386[PubMed]
    [Google Scholar]
  47. Schuster M., Lostroh C. P., Ogi T., Greenberg E. P..( 2003;). Identification, timing, and signal specificity of Pseudomonas aeruginosa quorum-controlled genes: a transcriptome analysis. J Bacteriol185:2066–2079 [CrossRef][PubMed]
    [Google Scholar]
  48. Seed P. C., Passador L., Iglewski B. H..( 1995;). Activation of the Pseudomonas aeruginosa lasI gene by LasR and the Pseudomonas autoinducer PAI: an autoinduction regulatory hierarchy. J Bacteriol177:654–659[PubMed]
    [Google Scholar]
  49. Shimada T., Tanaka K., Takenaka S., Murayama N., Martin M. V., Foroozesh M. K., Yamazaki H., Guengerich F. P., Komori M..( 2010;). Structure–function relationships of inhibition of human cytochromes P450 1A1, 1A2, 1B1, 2C9, and 3A4 by 33 flavonoid derivatives. Chem Res Toxicol23:1921–1935 [CrossRef][PubMed]
    [Google Scholar]
  50. Singh R. P., Gu M., Agarwal R..( 2008;). Silibinin inhibits colorectal cancer growth by inhibiting tumor cell proliferation and angiogenesis. Cancer Res68:2043–2050 [CrossRef][PubMed]
    [Google Scholar]
  51. Skindersoe M. E., Ettinger-Epstein P., Rasmussen T. B., Bjarnsholt T., de Nys R., Givskov M..( 2008;). Quorum sensing antagonism from marine organisms. Mar Biotechnol (NY)10:56–63 [CrossRef][PubMed]
    [Google Scholar]
  52. Smith A. W., Iglewski B. H..( 1989;). Transformation of Pseudomonas aeruginosa by electroporation. Nucleic Acids Res17:10509 [CrossRef][PubMed]
    [Google Scholar]
  53. Subramanian S., Stacey G., Yu O..( 2007;). Distinct, crucial roles of flavonoids during legume nodulation. Trends Plant Sci12:282–285 [CrossRef][PubMed]
    [Google Scholar]
  54. Taha M. O., Al-Bakri A. G., Zalloum W. A..( 2006;). Discovery of potent inhibitors of pseudomonal quorum sensing via pharmacophore modeling and in silico screening. Bioorg Med Chem Lett16:5902–5906 [CrossRef][PubMed]
    [Google Scholar]
  55. Teoh A. Y., Hui M., Ngo K. Y., Wong J., Lee K. F., Lai P. B..( 2006;). Fatal septicaemia from Chromobacterium violaceum: case reports and review of the literature. Hong Kong Med J12:228–231[PubMed]
    [Google Scholar]
  56. Teplitski M., Mathesius U., Rumbaugh K. P..( 2011;). Perception and degradation of N-acyl homoserine lactone quorum sensing signals by mammalian and plant cells. Chem Rev111:100–116 [CrossRef][PubMed]
    [Google Scholar]
  57. Toder D. S., Gambello M. J., Iglewski B. H..( 1991;). Pseudomonas aeruginosa LasA: a second elastase under the transcriptional control of lasR.. Mol Microbiol5:2003–2010 [CrossRef][PubMed]
    [Google Scholar]
  58. Toder D. S., Ferrell S. J., Nezezon J. L., Rust L., Iglewski B. H..( 1994;). lasA and lasB genes of Pseudomonas aeruginosa: analysis of transcription and gene product activity. Infect Immun62:1320–1327[PubMed]
    [Google Scholar]
  59. Ulanowska K., Tkaczyk A., Konopa G., Węgrzyn G..( 2006;). Differential antibacterial activity of genistein arising from global inhibition of DNA, RNA and protein synthesis in some bacterial strains. Arch Microbiol184:271–278 [CrossRef][PubMed]
    [Google Scholar]
  60. Van Delden C., Pesci E. C., Pearson J. P., Iglewski B. H..( 1998;). Starvation selection restores elastase and rhamnolipid production in a Pseudomonas aeruginosa quorum-sensing mutant. Infect Immun66:4499–4502[PubMed]
    [Google Scholar]
  61. Vandeputte O. M., Kiendrebeogo M., Rajaonson S., Diallo B., Mol A., El Jaziri M., Baucher M..( 2010;). Identification of catechin as one of the flavonoids from Combretum albiflorum bark extract that reduces the production of quorum-sensing-controlled virulence factors in Pseudomonas aeruginosa PAO1. Appl Environ Microbiol76:243–253 [CrossRef][PubMed]
    [Google Scholar]
  62. Vikram A., Jayaprakasha G. K., Jesudhasan P. R., Pillai S. D., Patil B. S..( 2010;). Suppression of bacterial cell–cell signalling, biofilm formation and type III secretion system by citrus flavonoids. J Appl Microbiol109:515–527[PubMed]
    [Google Scholar]
  63. Wade D. S., Calfee M. W., Rocha E. R., Ling E. A., Engstrom E., Coleman J. P., Pesci E. C..( 2005;). Regulation of Pseudomonas quinolone signal synthesis in Pseudomonas aeruginosa. J Bacteriol187:4372–4380 [CrossRef][PubMed]
    [Google Scholar]
  64. Wagner V. E., Gillis R. J., Iglewski B. H..( 2004;). Transcriptome analysis of quorum-sensing regulation and virulence factor expression in Pseudomonas aeruginosa. Vaccine22:Suppl. 1S15–S20 [CrossRef][PubMed]
    [Google Scholar]
  65. Williams R. J., Spencer J. P., Rice-Evans C..( 2004;). Flavonoids: antioxidants or signalling molecules?. Free Radic Biol Med36:838–849 [CrossRef][PubMed]
    [Google Scholar]
  66. Xu H.-X., Lee S. F..( 2001;). Activity of plant flavonoids against antibiotic-resistant bacteria. Phytother Res15:39–43 [CrossRef][PubMed]
    [Google Scholar]
  67. Yang L., Rybtke M. T., Jakobsen T. H., Hentzer M., Bjarnsholt T., Givskov M., Tolker-Nielsen T..( 2009;). Computer-aided identification of recognized drugs as Pseudomonas aeruginosa quorum-sensing inhibitors. Antimicrob Agents Chemother53:2432–2443 [CrossRef][PubMed]
    [Google Scholar]
  68. Zeng Z., Qian L., Cao L., Tan H., Huang Y., Xue X., Shen Y., Zhou S..( 2008;). Virtual screening for novel quorum sensing inhibitors to eradicate biofilm formation of Pseudomonas aeruginosa. Appl Microbiol Biotechnol79:119–126 [CrossRef][PubMed]
    [Google Scholar]
  69. Zhang X., Bremer H..( 1995;). Control of the Escherichia coli rrnB P1 promoter strength by ppGpp. J Biol Chem270:11181–11189 [CrossRef][PubMed]
    [Google Scholar]
  70. Zhang J., Subramanian S., Stacey G., Yu O..( 2009;). Flavones and flavonols play distinct critical roles during nodulation of Medicago truncatula by Sinorhizobium meliloti. Plant J57:171–183 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.049338-0
Loading
/content/journal/micro/10.1099/mic.0.049338-0
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error