1887

Abstract

Recently, the food yeast has emerged as an excellent host for production of heterologous proteins. Since secretion of the recombinant product is advantageous for its purification, we characterized the secreted proteome of Cells were cultivated to the exponential or stationary growth phase, and the proteins in the medium were identified by MS. In parallel, a draft genome sequence of strain DSM 2361 was determined by massively parallel sequencing. Comparisons of protein and coding sequences established that is not a member of the CUG clade of species. In total, we identified 37 proteins in the culture solution, 17 of which were exclusively present in the stationary phase, whereas three proteins were specific to the exponential growth phase. Identified proteins represented mostly carbohydrate-active enzymes associated with cell wall organization, while no proteolytic enzymes and only a few cytoplasmic proteins were detected. Remarkably, cultivation in xylose-based medium generated a protein pattern that diverged significantly from glucosegrown cells, containing the invertase Inv1 as the major extracellular protein, particularly in its highly glycosylated S-form (low-migrating). Furthermore, cultivation without ammonium sulfate induced the secretion of the asparaginase Asp3. Comparisons of the secretome of with those of and , as well as with those of the human fungal pathogens and , revealed a conserved set of 10 and six secretory proteins, respectively.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.049320-0
2011-09-01
2019-12-11
Loading full text...

Full text loading...

/deliver/fulltext/micro/157/9/2493.html?itemId=/content/journal/micro/10.1099/mic.0.049320-0&mimeType=html&fmt=ahah

References

  1. Altschul S. F. , Gish W. , Miller W. , Myers E. W. , Lipman D. J. . ( 1990; ). Basic local alignment search tool. . J Mol Biol 215:, 403–410.[PubMed] [CrossRef]
    [Google Scholar]
  2. Askwith C. , Eide D. , Van Ho A. , Bernard P. S. , Li L. , Davis-Kaplan S. , Sipe D. M. , Kaplan J. . ( 1994; ). The FET3 gene of S. cerevisiae encodes a multicopper oxidase required for ferrous iron uptake. . Cell 76:, 403–410. [CrossRef].[PubMed]
    [Google Scholar]
  3. Barbosa M. S. , Báo S. N. , Andreotti P. F. , de Faria F. P. , Felipe M. S. , dos Santos Feitosa L. , Mendes-Giannini M. J. , Soares C. M. . ( 2006; ). Glyceraldehyde-3-phosphate dehydrogenase of Paracoccidioides brasiliensis is a cell surface protein involved in fungal adhesion to extracellular matrix proteins and interaction with cells. . Infect Immun 74:, 382–389. [CrossRef].[PubMed]
    [Google Scholar]
  4. Belcarz A. , Ginalska G. , Lobarzewski J. , Penel C. . ( 2002; ). The novel non-glycosylated invertase from Candida utilis (the properties and the conditions of production and purification). . Biochim Biophys Acta 1594:, 40–53. [CrossRef].[PubMed]
    [Google Scholar]
  5. Bermejo C. , Rodríguez E. , García R. , Rodríguez-Peña J. M. , Rodríguez de la Concepción M. L. , Rivas C. , Arias P. , Nombela C. , Posas F. , Arroyo J. . ( 2008; ). The sequential activation of the yeast HOG and SLT2 pathways is required for cell survival to cell wall stress. . Mol Biol Cell 19:, 1113–1124. [CrossRef].[PubMed]
    [Google Scholar]
  6. Boze H. , Moulin G. , Galzy P. . ( 1992; ). Production of food and fodder yeasts. . Crit Rev Biotechnol 12:, 65–86. [CrossRef].[PubMed]
    [Google Scholar]
  7. Chakravorty M. , Veiga L. A. , Bacila M. , Horecker B. L. . ( 1962; ). Pentose metabolism in Candida. II. The diphosphopyridine nucleotide-specific polyol dehydrogenase of Candida utilis . . J Biol Chem 237:, 1014–1020.[PubMed]
    [Google Scholar]
  8. Chávez F. P. , Rodriguez L. , Díaz J. , Delgado J. M. , Cremata J. A. . ( 1997; ). Purification and characterization of an invertase from Candida utilis: comparison with natural and recombinant yeast invertases. . J Biotechnol 53:, 67–74. [CrossRef].[PubMed]
    [Google Scholar]
  9. Chávez F. P. , Pons T. , Delgado J. M. , Rodríguez L. . ( 1998; ). Cloning and sequence analysis of the gene encoding invertase (INV1) from the yeast Candida utilis . . Yeast 14:, 1223–1232. [CrossRef].[PubMed]
    [Google Scholar]
  10. Cormack B. P. , Bertram G. , Egerton M. , Gow N. A. , Falkow S. , Brown A. J. . ( 1997; ). Yeast-enhanced green fluorescent protein (yEGFP): a reporter of gene expression in Candida albicans . . Microbiology 143:, 303–311. [CrossRef].[PubMed]
    [Google Scholar]
  11. Dereeper A. , Guignon V. , Blanc G. , Audic S. , Buffet S. , Chevenet F. , Dufayard J. F. , Guindon S. , Lefort V. et al. ( 2008; ). Phylogeny.fr: robust phylogenetic analysis for the non-specialist. . Nucleic Acids Res 36: Web Server issue W465–W469. [CrossRef].[PubMed]
    [Google Scholar]
  12. Desjardins P. , Hansen J. B. , Allen M. . ( 2009; ). Microvolume protein concentration determination using the NanoDrop 2000c spectrophotometer. . J Vis Exp (33), 1610.[PubMed]
    [Google Scholar]
  13. Dworschack R. G. , Wickerham L. J. . ( 1961; ). Production of extracellular and total invertase by Candida utilis, Saccharomyces cerevisiae, and other yeasts. . Appl Microbiol 9:, 291–294.[PubMed]
    [Google Scholar]
  14. Eisenhaber B. , Schneider G. , Wildpaner M. , Eisenhaber F. . ( 2004; ). A sensitive predictor for potential GPI lipid modification sites in fungal protein sequences and its application to genome-wide studies for Aspergillus nidulans, Candida albicans, Neurospora crassa, Saccharomyces cerevisiae and Schizosaccharomyces pombe . . J Mol Biol 337:, 243–253. [CrossRef].[PubMed]
    [Google Scholar]
  15. Enjalbert B. , Nantel A. , Whiteway M. . ( 2003; ). Stress-induced gene expression in Candida albicans: absence of a general stress response. . Mol Biol Cell 14:, 1460–1467. [CrossRef].[PubMed]
    [Google Scholar]
  16. Fujino S. , Akiyama D. , Akaboshi S. , Fujita T. , Watanabe Y. , Tamai Y. . ( 2006; ). Purification and characterization of phospholipase B from Candida utilis . . Biosci Biotechnol Biochem 70:, 377–386. [CrossRef].[PubMed]
    [Google Scholar]
  17. Hackel R. A. , Khan N. A. . ( 1978; ). Genetic control of invertase formation in Saccharomyces cerevisiae. II. Isolation and characterization of mutants conferring invertase hyperproduction in strain EK-6B carrying the SUC3 gene. . Mol Gen Genet 164:, 295–302. [CrossRef].[PubMed]
    [Google Scholar]
  18. Hong Y. R. , Chen Y. L. , Farh L. , Yang W. J. , Liao C. H. , Shiuan D. . ( 2006; ). Recombinant Candida utilis for the production of biotin. . Appl Microbiol Biotechnol 71:, 211–221. [CrossRef].[PubMed]
    [Google Scholar]
  19. Huang Y. C. , Chen H. T. , Teng S. C. . ( 2010; ). Intragenic transcription of a noncoding RNA modulates expression of ASP3 in budding yeast. . RNA 16:, 2085–2093. [CrossRef].[PubMed]
    [Google Scholar]
  20. Ikushima S. , Fujii T. , Kobayashi O. , Yoshida S. , Yoshida A. . ( 2009; ). Genetic engineering of Candida utilis yeast for efficient production of l-lactic acid. . Biosci Biotechnol Biochem 73:, 1818–1824. [CrossRef].[PubMed]
    [Google Scholar]
  21. Inskeep G. C. , Wiley A. J. , Holderby J. M. , Hughes L. P. . ( 1951; ). Food yeast from sulfite liquor. . Ind Eng Chem 43:, 1702–1711. [CrossRef]
    [Google Scholar]
  22. Ishihama Y. , Oda Y. , Tabata T. , Sato T. , Nagasu T. , Rappsilber J. , Mann M. . ( 2005; ). Exponentially modified protein abundance index (emPAI) for estimation of absolute protein amount in proteomics by the number of sequenced peptides per protein. . Mol Cell Proteomics 4:, 1265–1272. [CrossRef].[PubMed]
    [Google Scholar]
  23. Jakubowski W. , Biliński T. , Bartosz G. . ( 2000; ). Oxidative stress during aging of stationary cultures of the yeast Saccharomyces cerevisiae . . Free Radic Biol Med 28:, 659–664. [CrossRef].[PubMed]
    [Google Scholar]
  24. Khan T. R. , Daugulis A. J. . ( 2010; ). Application of solid-liquid TPPBs to the production of l-phenylacetylcarbinol from benzaldehyde using Candida utilis . . Biotechnol Bioeng 107:, 633–641. [CrossRef].[PubMed]
    [Google Scholar]
  25. Kil J. O. , Kim G. N. , Park I. . ( 1995; ). Extraction of extracellular l-asparaginase from Candida utilis . . Biosci Biotechnol Biochem 59:, 749–750. [CrossRef].[PubMed]
    [Google Scholar]
  26. Kim K. W. , Kamerud J. Q. , Livingston D. M. , Roon R. J. . ( 1988; ). Asparaginase II of Saccharomyces cerevisiae. Characterization of the ASP3 gene. . J Biol Chem 263:, 11948–11953.[PubMed]
    [Google Scholar]
  27. Kitagaki H. , Wu H. , Shimoi H. , Ito K. . ( 2002; ). Two homologous genes, DCW1 (YKL046c) and DFG5, are essential for cell growth and encode glycosylphosphatidylinositol (GPI)-anchored membrane proteins required for cell wall biogenesis in Saccharomyces cerevisiae . . Mol Microbiol 46:, 1011–1022. [CrossRef].[PubMed]
    [Google Scholar]
  28. Kondo K. , Miura Y. , Sone H. , Kobayashi K. , Iijima H. . ( 1997; ). High-level expression of a sweet protein, monellin, in the food yeast Candida utilis . . Nat Biotechnol 15:, 453–457. [CrossRef].[PubMed]
    [Google Scholar]
  29. Lee S. A. , Wormsley S. , Kamoun S. , Lee A. F. , Joiner K. , Wong B. . ( 2003; ). An analysis of the Candida albicans genome database for soluble secreted proteins using computer-based prediction algorithms. . Yeast 20:, 595–610. [CrossRef].[PubMed]
    [Google Scholar]
  30. Liang G. , Liao X. , Du G. , Chen J. . ( 2008; ). Elevated glutathione production by adding precursor amino acids coupled with ATP in high cell density cultivation of Candida utilis . . J Appl Microbiol 105:, 1432–1440. [CrossRef].[PubMed]
    [Google Scholar]
  31. Lo W. S. , Dranginis A. M. . ( 1996; ). FLO11, a yeast gene related to the STA genes, encodes a novel cell surface flocculin. . J Bacteriol 178:, 7144–7151.[PubMed]
    [Google Scholar]
  32. Madinger C. L. , Sharma S. S. , Anton B. P. , Fields L. G. , Cushing M. L. , Canovas J. , Taron C. H. , Benner J. S. . ( 2009; ). The effect of carbon source on the secretome of Kluyveromyces lactis . . Proteomics 9:, 4744–4754. [CrossRef].[PubMed]
    [Google Scholar]
  33. Massey S. E. , Moura G. , Beltrão P. , Almeida R. , Garey J. R. , Tuite M. F. , Santos M. A. . ( 2003; ). Comparative evolutionary genomics unveils the molecular mechanism of reassignment of the CTG codon in Candida spp. . Genome Res 13:, 544–557. [CrossRef].[PubMed]
    [Google Scholar]
  34. Mattanovich D. , Graf A. , Stadlmann J. , Dragosits M. , Redl A. , Maurer M. , Kleinheinz M. , Sauer M. , Altmann F. , Gasser B. . ( 2009; ). Genome, secretome and glucose transport highlight unique features of the protein production host Pichia pastoris . . Microb Cell Fact 8:, 29. [CrossRef].[PubMed]
    [Google Scholar]
  35. Miller K. A. , DiDone L. , Krysan D. J. . ( 2010; ). Extracellular secretion of overexpressed glycosylphosphatidylinositol-linked cell wall protein Utr2/Crh2p as a novel protein quality control mechanism in Saccharomyces cerevisiae . . Eukaryot Cell 9:, 1669–1679. [CrossRef].[PubMed]
    [Google Scholar]
  36. Miura Y. , Kondo K. , Saito T. , Shimada H. , Fraser P. D. , Misawa N. . ( 1998; ). Production of the carotenoids lycopene, beta-carotene, and astaxanthin in the food yeast Candida utilis . . Appl Environ Microbiol 64:, 1226–1229.[PubMed]
    [Google Scholar]
  37. Miura Y. , Kettoku M. , Kato M. , Kobayashi K. , Kondo K. . ( 1999; ). High level production of thermostable alpha-amylase from Sulfolobus solfataricus in high-cell density culture of the food yeast Candida utilis . . J Mol Microbiol Biotechnol 1:, 129–134.[PubMed]
    [Google Scholar]
  38. Parra-Ortega B. , Cruz-Torres H. , Villa-Tanaca L. , Hernández-Rodríguez C. . ( 2009; ). Phylogeny and evolution of the aspartyl protease family from clinically relevant Candida species. . Mem Inst Oswaldo Cruz 104:, 505–512. [CrossRef].[PubMed]
    [Google Scholar]
  39. Roca C. , Haack M. B. , Olsson L. . ( 2004; ). Engineering of carbon catabolite repression in recombinant xylose fermenting Saccharomyces cerevisiae . . Appl Microbiol Biotechnol 63:, 578–583. [CrossRef].[PubMed]
    [Google Scholar]
  40. Román E. , Cottier F. , Ernst J. F. , Pla J. . ( 2009; ). Msb2 signaling mucin controls activation of Cek1 mitogen-activated protein kinase in Candida albicans . . Eukaryot Cell 8:, 1235–1249. [CrossRef].[PubMed]
    [Google Scholar]
  41. Ruszova E. , Pavek S. , Hajkova V. , Jandova S. , Velebny V. , Papezikova I. , Kubala L. . ( 2008; ). Photoprotective effects of glucomannan isolated from Candida utilis . . Carbohydr Res 343:, 501–511. [CrossRef].[PubMed]
    [Google Scholar]
  42. Smith P. K. , Krohn R. I. , Hermanson G. T. , Mallia A. K. , Gartner F. H. , Provenzano M. D. , Fujimoto E. K. , Goeke N. M. , Olson B. J. , Klenk D. C. . ( 1985; ). Measurement of protein using bicinchoninic acid. . Anal Biochem 150:, 76–85. [CrossRef].[PubMed]
    [Google Scholar]
  43. Soll D. R. , Morrow B. , Srikantha T. , Vargas K. , Wertz P. . ( 1994; ). Developmental and molecular biology of switching in Candida albicans . . Oral Surg Oral Med Oral Pathol 78:, 194–201. [CrossRef].[PubMed]
    [Google Scholar]
  44. Sorgo A. G. , Heilmann C. J. , Dekker H. L. , Brul S. , de Koster C. G. , Klis F. M. . ( 2010; ). Mass spectrometric analysis of the secretome of Candida albicans . . Yeast 27:, 661–672. [CrossRef].[PubMed]
    [Google Scholar]
  45. Spreghini E. , Davis D. A. , Subaran R. , Kim M. , Mitchell A. P. . ( 2003; ). Roles of Candida albicans Dfg5p and Dcw1p cell surface proteins in growth and hypha formation. . Eukaryot Cell 2:, 746–755. [CrossRef].[PubMed]
    [Google Scholar]
  46. Stanke M. , Keller O. , Gunduz I. , Hayes A. , Waack S. , Morgenstern B. . ( 2006; ). augustus: ab initio prediction of alternative transcripts. . Nucleic Acids Res 34: (Web Server issue), W435–W439. [CrossRef].[PubMed]
    [Google Scholar]
  47. Stead D. A. , Walker J. , Holcombe L. , Gibbs S. R. , Yin Z. , Selway L. , Butler G. , Brown A. J. , Haynes K. . ( 2010; ). Impact of the transcriptional regulator, Ace2, on the Candida glabrata secretome. . Proteomics 10:, 212–223. [CrossRef].[PubMed]
    [Google Scholar]
  48. Swaim C. L. , Anton B. P. , Sharma S. S. , Taron C. H. , Benner J. S. . ( 2008; ). Physical and computational analysis of the yeast Kluyveromyces lactis secreted proteome. . Proteomics 8:, 2714–2723. [CrossRef].[PubMed]
    [Google Scholar]
  49. Terashima H. , Hamada K. , Kitada K. . ( 2003; ). The localization change of Ybr078w/Ecm33, a yeast GPI-associated protein, from the plasma membrane to the cell wall, affecting the cellular function. . FEMS Microbiol Lett 218:, 175–180. [CrossRef].[PubMed]
    [Google Scholar]
  50. Vadaie N. , Dionne H. , Akajagbor D. S. , Nickerson S. R. , Krysan D. J. , Cullen P. J. . ( 2008; ). Cleavage of the signaling mucin Msb2 by the aspartyl protease Yps1 is required for MAPK activation in yeast. . J Cell Biol 181:, 1073–1081. [CrossRef].[PubMed]
    [Google Scholar]
  51. Vainstein M. H. , Peberdy J. F. . ( 1991; ). Regulation of invertase in Aspergillus nidulans: effect of different carbon sources. . J Gen Microbiol 137:, 315–321.[PubMed] [CrossRef]
    [Google Scholar]
  52. Wang P. , Duan W. , Munn A. L. , Yang H. . ( 2005; ). Molecular characterization of Osh6p, an oxysterol binding protein homolog in the yeast Saccharomyces cerevisiae . . FEBS J 272:, 4703–4715. [CrossRef].[PubMed]
    [Google Scholar]
  53. Wei W. , Hong-Lan Y. , Huifang B. , Daoyuan Z. , Qi-Mu-Ge S. , Wood A. J. . ( 2010; ). The effective expression of xylanase gene in Candida utilis by 18S rDNA targeted homologous recombination in pGLR9K. . Mol Biol Rep 37:, 2615–2620. [CrossRef].[PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.049320-0
Loading
/content/journal/micro/10.1099/mic.0.049320-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error