1887

Abstract

is a trypanosomatid protozoan that harbours a symbiotic bacterium. The partners maintain a mutualistic relationship, thus constituting an excellent model for studying metabolic exchanges between the host and the symbiont, the origin of organelles and cellular evolution. According to molecular analysis, symbionts of different trypanosomatid species share high identity and descend from a common ancestor, a β-proteobacterium of the genus . The endosymbiont is surrounded by two membranes, like Gram-negative bacteria, but its envelope presents special features, since phosphatidylcholine is a major membrane component and the peptidoglycan layer is highly reduced, as described in other obligate intracellular bacteria. Like the process that generated mitochondria and plastids, the endosymbiosis in trypanosomatids depends on pathways that facilitate the intensive metabolic exchanges between the bacterium and the host protozoan. A search of the annotated symbiont genome database identified one sequence with identity to porin-encoding genes of the genus . Considering that the symbiont outer membrane has a great accessibility to cytoplasm host factors, it was important to characterize this single porin-like protein using biochemical, molecular, computational and ultrastructural approaches. Antiserum against the recombinant porin-like molecule revealed that it is mainly located in the symbiont envelope. Secondary structure analysis and comparative modelling predicted the protein 3D structure as an 18-domain β-barrel, which is consistent with porin channels. Electrophysiological measurements showed that the porin displays a slight preference for cations over anions. Taken together, the data presented herein suggest that the endosymbiont porin is phylogenetically and structurally similar to those described in Gram-negative bacteria, representing a diffusion channel that might contribute to the exchange of nutrients and metabolic precursors between the symbiont and its host cell.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.049247-0
2011-10-01
2020-01-29
Loading full text...

Full text loading...

/deliver/fulltext/micro/157/10/2818.html?itemId=/content/journal/micro/10.1099/mic.0.049247-0&mimeType=html&fmt=ahah

References

  1. Alfieri S. C., Camargo E. P.. ( 1982;). Trypanosomatidae: isoleucine requirement and threonine deaminase in species with and without endosymbionts. Exp Parasitol53:371–380 [CrossRef][PubMed]
    [Google Scholar]
  2. Altschul S. F., Gish W., Miller W., Myers E. W., Lipman D. J.. ( 1990;). Basic local alignment search tool. J Mol Biol215:403–410[PubMed][CrossRef]
    [Google Scholar]
  3. Bendtsen J. D., Nielsen H., von Heijne G., Brunak S.. ( 2004;). Improved prediction of signal peptides: SignalP 3.0. J Mol Biol340:783–795 [CrossRef][PubMed]
    [Google Scholar]
  4. Berman H. M., Westbrook J., Feng Z., Gilliland G., Bhat T. N., Weissig H., Shindyalov I. N., Bourne P. E.. ( 2000;). The Protein Data Bank. Nucleic Acids Res28:235–242 [CrossRef][PubMed]
    [Google Scholar]
  5. Bölter B., Soll J.. ( 2001;). Ion channels in the outer membranes of chloroplasts and mitochondria: open doors or regulated gates?. EMBO J20:935–940 [CrossRef][PubMed]
    [Google Scholar]
  6. Burghardt T., Näther D. J., Junglas B., Huber H., Rachel R.. ( 2007;). The dominating outer membrane protein of the hyperthermophilic Archaeum Ignicoccus hospitalis: a novel pore-forming complex. Mol Microbiol63:166–176 [CrossRef][PubMed]
    [Google Scholar]
  7. Camargo E. P., Freymuller E.. ( 1977;). Endosymbiont as supplier of ornithine carbamoyltransferase in a trypanosomatid. Nature270:52–53 [CrossRef][PubMed]
    [Google Scholar]
  8. Colombini M.. ( 2004;). VDAC: the channel at the interface between mitochondria and the cytosol. Mol Cell Biochem256-257:107–115 [CrossRef][PubMed]
    [Google Scholar]
  9. Corsaro D., Venditti D., Padula M., Valassina M.. ( 1999;). Intracellular life. Crit Rev Microbiol25:39–79 [CrossRef][PubMed]
    [Google Scholar]
  10. Dolezal P., Likic V., Tachezy J., Lithgow T.. ( 2006;). Evolution of the molecular machines for protein import into mitochondria. Science313:314–318 [CrossRef][PubMed]
    [Google Scholar]
  11. Du Y., McLaughlin G., Chang K. P.. ( 1994;). 16S ribosomal DNA sequence identities of β-proteobacterial endosymbionts in three Crithidia species. J Bacteriol176:3081–3084[PubMed]
    [Google Scholar]
  12. Duy D., Soll J., Philippar K.. ( 2007;). Solute channels of the outer membrane: from bacteria to chloroplasts. Biol Chem388:879–889 [CrossRef][PubMed]
    [Google Scholar]
  13. Efron B., Halloran E., Holmes S.. ( 1996;). Bootstrap confidence levels for phylogenetic trees. Proc Natl Acad Sci U S A93:13429–13434 [CrossRef][PubMed]
    [Google Scholar]
  14. Eswar N., Webb B., Marti-Renom M. A., Madhusudhan M. S., Eramian D., Shen M. Y., Pieper U., Sali A.. ( 2006;). Comparative protein structure modeling using Modeller. Curr Protoc BioinformaticsChapter 5:5–, 6[PubMed]
    [Google Scholar]
  15. Fajardo D. A., Cheung J., Ito C., Sugawara E., Nikaido H., Misra R.. ( 1998;). Biochemistry and regulation of a novel Escherichia coli K-12 porin protein, OmpG, which produces unusually large channels. J Bacteriol180:4452–4459[PubMed]
    [Google Scholar]
  16. Ferguson A. D., Chakraborty R., Smith B. S., Esser L., van der Helm D., Deisenhofer J.. ( 2002;). Structural basis of gating by the outer membrane transporter FecA. Science295:1715–1719 [CrossRef][PubMed]
    [Google Scholar]
  17. Finn R. D., Tate J., Mistry J., Coggill P. C., Sammut S. J., Hotz H. R., Ceric G., Forslund K., Eddy S. R. et al. ( 2008;). The Pfam protein families database. Nucleic Acids Res36:Database issueD281–D288 [CrossRef][PubMed]
    [Google Scholar]
  18. Frossard M. L., Seabra S. H., DaMatta R. A., de Souza W., de Mello F. G., Machado Motta M. C.. ( 2006;). An endosymbiont positively modulates ornithine decarboxylase in host trypanosomatids. Biochem Biophys Res Commun343:443–449 [CrossRef][PubMed]
    [Google Scholar]
  19. Goebel W., Gross R.. ( 2001;). Intracellular survival strategies of mutualistic and parasitic prokaryotes. Trends Microbiol9:267–273 [CrossRef][PubMed]
    [Google Scholar]
  20. Gross J., Bhattacharya D.. ( 2009;). Mitochondrial and plastid evolution in eukaryotes: an outsiders’ perspective. Nat Rev Genet10:495–505 [CrossRef][PubMed]
    [Google Scholar]
  21. Guex N., Peitsch M. C.. ( 1997;). swiss-model and the Swiss-PdbViewer: an environment for comparative protein modeling. Electrophoresis18:2714–2723 [CrossRef][PubMed]
    [Google Scholar]
  22. Hewitt V., Alcock F., Lithgow T.. ( 2011;). Minor modifications and major adaptations: the evolution of molecular machines driving mitochondrial protein import. Biochim Biophys Acta1808:947–954 [CrossRef][PubMed]
    [Google Scholar]
  23. Hille B.. ( 1992;). Ionic Channel of Excitable Membranes, 2nd edn. Sunderland, MA: Sinauer Associates Inc;
    [Google Scholar]
  24. Homble F., Mlayeh L., Leonetti M.. ( 2010;). Planar lipid bilayers for electrophysiology of membrane-active peptides. Membrane-Active Peptides: Methods and Results on Structure and Functionvol. 9281–320 Castanho M.. La Jolla, CA: IUL Publishers;
    [Google Scholar]
  25. Jones D. T.. ( 1999;). Protein secondary structure prediction based on position-specific scoring matrices. J Mol Biol292:195–202 [CrossRef][PubMed]
    [Google Scholar]
  26. Klebba P. E., Newton S. M.. ( 1998;). Mechanisms of solute transport through outer membrane porins: burning down the house. Curr Opin Microbiol1:238–247 [CrossRef][PubMed]
    [Google Scholar]
  27. Koebnik R., Locher K. P., Van Gelder P.. ( 2000;). Structure and function of bacterial outer membrane proteins: barrels in a nutshell. Mol Microbiol37:239–253 [CrossRef][PubMed]
    [Google Scholar]
  28. Kumar S., Nei M., Dudley J., Tamura K.. ( 2008;). mega: a biologist-centric software for evolutionary analysis of DNA and protein sequences. Brief Bioinform9:299–306 [CrossRef][PubMed]
    [Google Scholar]
  29. Laskowski R. A., MacArthur M. W., Moss D. S., Thornton J. M.. ( 1993;). procheck: a program to check the stereochemical quality of protein structures. J Appl Cryst26:283–291 [CrossRef]
    [Google Scholar]
  30. Lemasters J. J., Holmuhamedov E.. ( 2006;). Voltage-dependent anion channel (VDAC) as mitochondrial governator–thinking outside the box. Biochim Biophys Acta1762:181–190[PubMed][CrossRef]
    [Google Scholar]
  31. Liu M. Y., Colombini M.. ( 1991;). Voltage gating of the mitochondrial outer membrane channel VDAC is regulated by a very conserved protein. Am J Physiol260:C371–C374[PubMed]
    [Google Scholar]
  32. Liu M. Y., Colombini M.. ( 1992;). Regulation of mitochondrial respiration by controlling the permeability of the outer membrane through the mitochondrial channel, VDAC. Biochim Biophys Acta1098:255–260 [CrossRef][PubMed]
    [Google Scholar]
  33. López-Lara I. M., Geiger O.. ( 2001;). Novel pathway for phosphatidylcholine biosynthesis in bacteria associated with eukaryotes. J Biotechnol91:211–221 [CrossRef][PubMed]
    [Google Scholar]
  34. Mannella C. A.. ( 1992;). The ‘ins’ and ‘outs’ of mitochondrial membrane channels. Trends Biochem Sci17:315–320 [CrossRef][PubMed]
    [Google Scholar]
  35. Marjanović Ž., Uehlein N., Kaldenhoff R., Zwiazek J. J., Weiß M., Hampp R., Nehls U.. ( 2005;). Aquaporins in poplar: what a difference a symbiont makes!. Planta222:258–268 [CrossRef][PubMed]
    [Google Scholar]
  36. Motta M. C.. ( 2010;). Endosymbiosis in trypanosomatids as a model to study cell evolution. Open Parasitol J4:139–147[CrossRef]
    [Google Scholar]
  37. Motta M. C., Soares M. J., De Souza W.. ( 1991;). Freeze-fracture study of endosymbiont-bearing trypanosomatids of the Crithidia genus. Micr Electr Biol Cel15:131–144
    [Google Scholar]
  38. Motta M. C., Monteiro-Leal L. H., De Souza W., Almeida D. F., Ferreira L. C.. ( 1997a;). Detection of penicillin-binding proteins in endosymbionts of the trypanosomatid Crithidia deanei . J Eukaryot Microbiol44:492–496 [CrossRef]
    [Google Scholar]
  39. Motta M. C., Soares M. J., Attias M., Morgado J., Lemos A. P., Saad-Nehme J., Meyer-Fernandes J. R., De Souza W.. ( 1997b;). Ultrastructural and biochemical analysis of the relationship of Crithidia deanei with its endosymbiont. Eur J Cell Biol72:370–377[PubMed]
    [Google Scholar]
  40. Nikaido H.. ( 1992;). Porins and specific channels of bacterial outer membranes. Mol Microbiol6:435–442 [CrossRef][PubMed]
    [Google Scholar]
  41. Nikaido H.. ( 1993;). Transport across the bacterial outer membrane. J Bioenerg Biomembr25:581–589[PubMed]
    [Google Scholar]
  42. Nikaido H.. ( 2003;). Molecular basis of bacterial outer membrane permeability revisited. Microbiol Mol Biol Rev67:593–656 [CrossRef][PubMed]
    [Google Scholar]
  43. Nikaido H., Rosenberg E. Y.. ( 1981;). Effect on solute size on diffusion rates through the transmembrane pores of the outer membrane of Escherichia coli . J Gen Physiol77:121–135 [CrossRef][PubMed]
    [Google Scholar]
  44. Novak E., Freymuller H., Da Silva S., da Silveira J. F.. ( 1988;). Protein synthesis in isolated symbionts from the flagellate protozoon Crithidia deanei . J Protozool35:375–378[CrossRef]
    [Google Scholar]
  45. Palmié-Peixoto I. V., Rocha M. R., Urbina J. A., de Souza W., Einicker-Lamas M., Motta M. C.. ( 2006;). Effects of sterol biosynthesis inhibitors on endosymbiont-bearing trypanosomatids. FEMS Microbiol Lett255:33–42 [CrossRef][PubMed]
    [Google Scholar]
  46. Pei J., Grishin N. V.. ( 2007;). promals: towards accurate multiple sequence alignments of distantly related proteins. Bioinformatics23:802–808 [CrossRef][PubMed]
    [Google Scholar]
  47. Pohorille A., Schweighofer K., Wilson M. A.. ( 2005;). The origin and early evolution of membrane channels. Astrobiology5:1–17 [CrossRef][PubMed]
    [Google Scholar]
  48. Pruitt K. D., Tatusova T., Maglott D. R.. ( 2007;). NCBI reference sequences (RefSeq): a curated non-redundant sequence database of genomes, transcripts and proteins. Nucleic Acids Res35:Database issueD61–D65 [CrossRef][PubMed]
    [Google Scholar]
  49. Pugsley A. P.. ( 1993;). The complete general secretory pathway in Gram-negative bacteria. Microbiol Rev57:50–108[PubMed]
    [Google Scholar]
  50. Rachel R., Wyschkony I., Riehl S., Huber H.. ( 2002;). The ultrastructure of Ignicoccus: evidence for a novel outer membrane and for intracellular vesicle budding in an archaeon. Archaea1:9–18 [CrossRef][PubMed]
    [Google Scholar]
  51. Reumann S., Maier E., Benz R., Heldt H. W.. ( 1996;). A specific porin is involved in the malate shuttle of leaf peroxisomes. Biochem Soc Trans24:754–757[PubMed]
    [Google Scholar]
  52. Ruiz N., Kahne D., Silhavy T. J.. ( 2006;). Advances in understanding bacterial outer-membrane biogenesis. Nat Rev Microbiol4:57–66 [CrossRef][PubMed]
    [Google Scholar]
  53. Saitou N., Nei M.. ( 1987;). The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol4:406–425[PubMed]
    [Google Scholar]
  54. Salzman T. A., Batlle A. M., Angluster J., de Souza W.. ( 1985;). Heme synthesis in Crithidia deanei: influence of the endosymbiote. Int J Biochem17:1343–1347 [CrossRef][PubMed]
    [Google Scholar]
  55. Soares M. J., De Souza M. F., De Souza W.. ( 1987;). Ultrastructural visualization of lipids in trypanosomatids. J Protozool34:199–203[PubMed][CrossRef]
    [Google Scholar]
  56. Tamura K., Nei M., Kumar S.. ( 2004;). Prospects for inferring very large phylogenies by using the neighbor-joining method. Proc Natl Acad Sci U S A101:11030–11035 [CrossRef][PubMed]
    [Google Scholar]
  57. Tatusov R. L., Natale D. A., Garkavtsev I. V., Tatusova T. A., Shankavaram U. T., Rao B. S., Kiryutin B., Galperin M. Y., Fedorova N. D., Koonin E. V.. ( 2001;). The COG database: new developments in phylogenetic classification of proteins from complete genomes. Nucleic Acids Res29:22–28 [CrossRef][PubMed]
    [Google Scholar]
  58. von Heijne G.. ( 1990;). Protein targeting signals. Curr Opin Cell Biol2:604–608 [CrossRef][PubMed]
    [Google Scholar]
  59. Warren L. G.. ( 1960;). Metabolism of Schizotrypanum cruzi Chagas. I. Effect of culture age and substrate concentration on respiratory rate. J Parasitol46:529–539 [CrossRef][PubMed]
    [Google Scholar]
  60. Zachariae U., Klühspies T., De S., Engelhardt H., Zeth K.. ( 2006;). High resolution crystal structures and molecular dynamics studies reveal substrate binding in the porin Omp32. J Biol Chem281:7413–7420 [CrossRef][PubMed]
    [Google Scholar]
  61. Zeth K., Thein M.. ( 2010;). Porins in prokaryotes and eukaryotes: common themes and variations. Biochem J431:13–22 [CrossRef][PubMed]
    [Google Scholar]
  62. Zientz E., Dandekar T., Gross R.. ( 2004;). Metabolic interdependence of obligate intracellular bacteria and their insect hosts. Microbiol Mol Biol Rev68:745–770 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.049247-0
Loading
/content/journal/micro/10.1099/mic.0.049247-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error