1887

Abstract

Nucleoside diphosphate kinase (NDK), responsible for the maintenance of NTP pools, is an ATP-utilizing enzyme secreted by different pathogens. We found that NDK from serovar Typhimurium ( Typhimurium) is also secretory in nature. Secretory NDK is known to play a crucial role in the survival of pathogenic microbes within host cells through their interaction with extracellular ATP. To elucidate this aspect, we assessed the contribution of secretory products containing NDK from intracellular ( and Typhimurium) and extracellular () pathogens to the process of ATP-induced J774 mouse macrophage cell lysis by monitoring lactate dehydrogenase (LDH) release in the culture medium. Compared with an untreated control, our results demonstrate that Typhimurium secretory products caused a greater than twofold decrease in LDH release from J774 macrophage cells treated with ATP. Furthermore, the secretory products from an -deleted strain of Typhimurium did not display such behaviour. Contrary to this observation, the secretory products containing NDK of were found to be cytotoxic to J774 cells. At the amino acid level, the sequences of both the NDKs ( Typhimurium and ) exhibited 65 % identity, and their biochemical characteristics (autophosphorylation and phosphotransfer activities) were indistinguishable. However, to our surprise, the secretory product of an -deleted strain of Typhimurium, when complemented with , was able to prevent ATP-induced cytolysis. Taken together, our results unambiguously imply that the intrinsic properties of secretory NDKs are identical in intra- and extracellular pathogens, irrespective of their mode of manifestation.

Funding
This study was supported by the:
  • Council of Scientific and Industrial Research
  • CSIR
  • IMTECH
Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.049221-0
2011-11-01
2024-12-07
Loading full text...

Full text loading...

/deliver/fulltext/micro/157/11/3024.html?itemId=/content/journal/micro/10.1099/mic.0.049221-0&mimeType=html&fmt=ahah

References

  1. Berrêdo-Pinho M., Peres-Sampaio C. E., Chrispim P. P., Belmont-Firpo R., Lemos A. P., Martiny A., Vannier-Santos M. A., Meyer-Fernandes J. R. ( 2001). A Mg-dependent ecto-ATPase in Leishmania amazonensis and its possible role in adenosine acquisition and virulence. Arch Biochem Biophys 391:16–24 [View Article][PubMed]
    [Google Scholar]
  2. Biggs J. P. S., Hersperger E., Steeg P. S., Liotta L. A., Shearn A. ( 1990). A Drosophila gene that is homologous to a mammalian gene associated with tumor metastasis codes for a nucleoside diphosphate kinase. Cell 63:933–940 [View Article][PubMed]
    [Google Scholar]
  3. Blanchard D. K., Wei S., Duan C., Pericle F., Diaz J. I., Djeu J. Y. ( 1995). Role of extracellular adenosine triphosphate in the cytotoxic T-lymphocyte-mediated lysis of antigen presenting cells. Blood 85:3173–3182[PubMed]
    [Google Scholar]
  4. Bradford M. M. ( 1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254 [View Article][PubMed]
    [Google Scholar]
  5. Chiozzi P., Murgia M., Falzoni S., Ferrari D., Di Virgilio F. ( 1996). Role of the purinergic P2Z receptor in spontaneous cell death in J774 macrophage cultures. Biochem Biophys Res Commun 218:176–181 [View Article][PubMed]
    [Google Scholar]
  6. Choi G., Yi H., Lee J., Kwon Y.-K., Soh M. S., Shin B., Luka Z., Hahn T. R., Song P. S. ( 1999). Phytochrome signalling is mediated through nucleoside diphosphate kinase 2. Nature 401:610–613 [View Article][PubMed]
    [Google Scholar]
  7. Chopra P., Singh A., Koul A., Ramachandran S., Drlica K., Tyagi A. K., Singh Y. ( 2003). Cytotoxic activity of nucleoside diphosphate kinase secreted from Mycobacterium tuberculosis. Eur J Biochem 270:625–634 [View Article][PubMed]
    [Google Scholar]
  8. Coutinho-Silva R., Perfettini J. L., Persechini P. M., Dautry-Varsat A., Ojcius D. M. ( 2001). Modulation of P2Z/P2X(7) receptor activity in macrophages infected with Chlamydia psittaci. Am J Physiol Cell Physiol 280:C81–C89[PubMed]
    [Google Scholar]
  9. Dar H. H., Chakraborti P. K. ( 2010). Intermolecular phosphotransfer is crucial for efficient catalytic activity of nucleoside diphosphate kinase. Biochem J 430:539–549 [View Article][PubMed]
    [Google Scholar]
  10. Di Virgilio F. ( 1995). The P2Z purinoceptor: an intriguing role in immunity, inflammation and cell death. Immunol Today 16:524–528 [View Article][PubMed]
    [Google Scholar]
  11. Dubyak G. R., el-Moatassim C. ( 1993). Signal transduction via P2-purinergic receptors for extracellular ATP and other nucleotides. Am J Physiol 265:C577–C606[PubMed]
    [Google Scholar]
  12. Ferrari D., Chiozzi P., Falzoni S., Dal Susino M., Melchiorri L., Baricordi O. R., Di Virgilio F. ( 1997). Extracellular ATP triggers IL-1 beta release by activating the purinergic P2Z receptor of human macrophages. J Immunol 159:1451–1458[PubMed]
    [Google Scholar]
  13. Garcia-del Portillo F., Finlay B. B. ( 1995). The varied lifestyles of intracellular pathogens within eukaryotic vacuolar compartments. Trends Microbiol 3:373–380 [View Article][PubMed]
    [Google Scholar]
  14. Ginther C. L., Ingraham J. L. ( 1974). Nucleoside diphosphokinase of Salmonella typhimurium. J Biol Chem 249:3406–3411[PubMed]
    [Google Scholar]
  15. Gounaris K., Thomas S., Najarro P., Selkirk M. E. ( 2001). Secreted variant of nucleoside diphosphate kinase from the intracellular parasitic nematode Trichinella spiralis. Infect Immun 69:3658–3662 [View Article][PubMed]
    [Google Scholar]
  16. Heidelberg J. F., Eisen J. A., Nelson W. C., Clayton R. A., Gwinn M. L., Dodson R. J., Haft D. H., Hickey E. K., Peterson J. D. et al. & other authors ( 2000). DNA sequence of both chromosomes of the cholera pathogen Vibrio cholerae. Nature 406:477–483 [View Article][PubMed]
    [Google Scholar]
  17. Ingraham J. L., Ginther C. L. ( 1978). Nucleoside diphosphokinase from Salmonella typhimurium. Methods Enzymol 51:371–375 [View Article][PubMed]
    [Google Scholar]
  18. Kolli B. K., Kostal J., Zaborina O., Chakrabarty A. M., Chang K. P. ( 2008). Leishmania-released nucleoside diphosphate kinase prevents ATP-mediated cytolysis of macrophages. Mol Biochem Parasitol 158:163–175 [View Article][PubMed]
    [Google Scholar]
  19. Lacombe M. L., Milon L., Munier A., Mehus J. G., Lambeth D. O. ( 2000). The human Nm23/nucleoside diphosphate kinases. J Bioenerg Biomembr 32:247–258 [View Article][PubMed]
    [Google Scholar]
  20. Lammas D. A., Stober C., Harvey C. J., Kendrick N., Panchalingam S., Kumararatne D. S. ( 1997). ATP-induced killing of mycobacteria by human macrophages is mediated by purinergic P2Z(P2X7) receptors. Immunity 7:433–444 [View Article][PubMed]
    [Google Scholar]
  21. Lascu L. ( 2000). The nucleoside diphosphate kinases 1973-2000. J Bioenerg Biomembr 32:213–214[PubMed]
    [Google Scholar]
  22. Lascu I., LeBlay K., Lacombe M. L., Presecan E., Véron M. ( 1993). Assay of nucleoside diphosphate kinase in microtiter plates using a peroxidase-coupled method. Anal Biochem 209:6–8 [View Article][PubMed]
    [Google Scholar]
  23. Melnikov A., Zaborina O., Dhiman N., Prabhakar B. S., Chakrabarty A. M., Hendrickson W. ( 2000). Clinical and environmental isolates of Burkholderia cepacia exhibit differential cytotoxicity towards macrophages and mast cells. Mol Microbiol 36:1481–1493 [View Article][PubMed]
    [Google Scholar]
  24. Miller V. L., Mekalanos J. J. ( 1988). A novel suicide vector and its use in construction of insertion mutations: osmoregulation of outer membrane proteins and virulence determinants in Vibrio cholerae requires toxR. J Bacteriol 170:2575–2583[PubMed]
    [Google Scholar]
  25. Molloy A., Laochumroonvorapong P., Kaplan G. ( 1994). Apoptosis, but not necrosis, of infected monocytes is coupled with killing of intracellular bacillus Calmette-Guérin. J Exp Med 180:1499–1509 [View Article][PubMed]
    [Google Scholar]
  26. Mukherjee K., Siddiqi S. A., Hashim S., Raje M., Basu S. K., Mukhopadhyay A. ( 2000). Live Salmonella recruits N-ethylmaleimide-sensitive fusion protein on phagosomal membrane and promotes fusion with early endosome. J Cell Biol 148:741–754 [View Article][PubMed]
    [Google Scholar]
  27. Paumet F., Wesolowski J., Garcia-Diaz A., Delevoye C., Aulner N., Shuman H. A., Subtil A., Rothman J. E. ( 2009). Intracellular bacteria encode inhibitory SNARE-like proteins. PLoS ONE 4:e7375 [View Article][PubMed]
    [Google Scholar]
  28. Pinheiro C. M., Martins-Duarte E. S., Ferraro R. B., Fonseca de Souza A. L., Gomes M. T., Lopes A. H., Vannier-Santos M. A., Santos A. L., Meyer-Fernandes J. R. ( 2006). Leishmania amazonensis: biological and biochemical characterization of ecto-nucleoside triphosphate diphosphohydrolase activities. Exp Parasitol 114:16–25 [View Article][PubMed]
    [Google Scholar]
  29. Postel E. H., Berberich S. J., Rooney J. W., Kaetzel D. M. ( 2000). Human NM23/nucleoside diphosphate kinase regulates gene expression through DNA binding to nuclease-hypersensitive transcriptional elements. J Bioenerg Biomembr 32:277–284 [View Article][PubMed]
    [Google Scholar]
  30. Prost L. R., Sanowar S., Miller S. I. ( 2007). Salmonella sensing of anti-microbial mechanisms to promote survival within macrophages. Immunol Rev 219:55–65 [View Article][PubMed]
    [Google Scholar]
  31. Punj V., Zaborina O., Dhiman N., Falzari K., Bagdasarian M., Chakrabarty A. M. ( 2000). Phagocytic cell killing mediated by secreted cytotoxic factors of Vibrio cholerae. Infect Immun 68:4930–4937 [View Article][PubMed]
    [Google Scholar]
  32. Raychaudhuri S., Jain V., Dongre M. ( 2006). Identification of a constitutively active variant of LuxO that affects production of HA/protease and biofilm development in a non-O1, non-O139 Vibrio cholerae O110. Gene 369:126–133 [View Article][PubMed]
    [Google Scholar]
  33. Sambrook J., Russell D. W. ( 2001). Molecular Cloning: a Laboratory Manual, 3rd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  34. Steeg P. S., Palmieri D., Ouatas T., Salerno M. ( 2003). Histidine kinases and histidine phosphorylated proteins in mammalian cell biology, signal transduction and cancer. Cancer Lett 190:1–12 [View Article][PubMed]
    [Google Scholar]
  35. Sun J., Wang X., Lau A., Liao T. Y., Bucci C., Hmama Z. ( 2010). Mycobacterial nucleoside diphosphate kinase blocks phagosome maturation in murine RAW 264.7 macrophages. PLoS ONE 5:e8769 [View Article][PubMed]
    [Google Scholar]
  36. Thompson J. D., Gibson T. J., Plewniak F., Jeanmougin F., Higgins D. G. ( 1997). The clustal_x windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882 [View Article][PubMed]
    [Google Scholar]
  37. Tiwari S., Kishan K. V., Chakrabarti T., Chakraborti P. K. ( 2004). Amino acid residues involved in autophosphorylation and phosphotransfer activities are distinct in nucleoside diphosphate kinase from Mycobacterium tuberculosis. J Biol Chem 279:43595–43603 [View Article][PubMed]
    [Google Scholar]
  38. Yilmaz O., Yao L., Maeda K., Rose T. M., Lewis E. L., Duman M., Lamont R. J., Ojcius D. M. ( 2008). ATP scavenging by the intracellular pathogen Porphyromonas gingivalis inhibits P2X7-mediated host-cell apoptosis. Cell Microbiol 10:863–875 [View Article][PubMed]
    [Google Scholar]
  39. Zaborina O., Li X., Cheng G., Kapatral V., Chakrabarty A. M. ( 1999a). Secretion of ATP-utilizing enzymes, nucleoside diphosphate kinase and ATPase, by Mycobacterium bovis BCG: sequestration of ATP from macrophage P2Z receptors?. Mol Microbiol 31:1333–1343 [View Article][PubMed]
    [Google Scholar]
  40. Zaborina O., Misra N., Kostal J., Kamath S., Kapatral V., El-Idrissi M. E., Prabhakar B. S., Chakrabarty A. M. ( 1999b). P2Z-independent and P2Z receptor-mediated macrophage killing by Pseudomonas aeruginosa isolated from cystic fibrosis patients. Infect Immun 67:5231–5242[PubMed]
    [Google Scholar]
  41. Zaborina O., Dhiman N., Ling Chen M., Kostal J., Holder I. A., Chakrabarty A. M. ( 2000). Secreted products of a nonmucoid Pseudomonas aeruginosa strain induce two modes of macrophage killing: external-ATP-dependent, P2Z-receptor-mediated necrosis and ATP-independent, caspase-mediated apoptosis. Microbiology 146:2521–2530[PubMed]
    [Google Scholar]
  42. Zambon A., Bronte V., Di Virgilio F., Hanau S., Steinberg T. H., Collavo D., Zanovello P. ( 1994). Role of extracellular ATP in cell-mediated cytotoxicity: a study with ATP-sensitive and ATP-resistant macrophages. Cell Immunol 156:458–467 [View Article][PubMed]
    [Google Scholar]
/content/journal/micro/10.1099/mic.0.049221-0
Loading
/content/journal/micro/10.1099/mic.0.049221-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF

Supplementary material 2

PDF

Supplementary material 3

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error