1887

Abstract

Coordination of the expression of invasion genes on pathogenicity island 1 (SPI1) depends on a complex circuit involving several regulators that converge on expression of the gene, which encodes a transcriptional activator (HilA) that modulates expression of the SPI1 virulence genes. Two of the global regulators that influence expression are the nucleoid-associated proteins Hha and H-NS. They interact and form a complex that modulates gene expression. A chromosomal transcriptional fusion was constructed to assess the effects of these modulators on transcription under several environmental conditions as well as at different stages of growth. The results obtained showed that these proteins play a role in silencing expression at both low temperature and low osmolarity, irrespective of the growth phase. H-NS accounts for the main repressor activity. At high temperature and osmolarity, H-NS-mediated silencing completely ceases when cells enter the stationary phase, and expression is induced. Mutants lacking IHF did not induce in cells entering the stationary phase, and this lack of induction was dependent on the presence of H-NS. Band-shift assays and transcription data showed that for induction under certain growth conditions, IHF is required to alleviate H-NS-mediated silencing.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.049197-0
2011-09-01
2019-10-24
Loading full text...

Full text loading...

/deliver/fulltext/micro/157/9/2504.html?itemId=/content/journal/micro/10.1099/mic.0.049197-0&mimeType=html&fmt=ahah

References

  1. Altier C.. ( 2005;). Genetic and environmental control of salmonella invasion. . J Microbiol 43: Spec. no.85–92.[PubMed]
    [Google Scholar]
  2. Bajaj V., Hwang C., Lee C. A.. ( 1995;). hilA is a novel ompR/toxR family member that activates the expression of Salmonella typhimurium invasion genes. . Mol Microbiol 18:, 715–727. [CrossRef].[PubMed]
    [Google Scholar]
  3. Bajaj V., Lucas R. L., Hwang C., Lee C. A.. ( 1996;). Co-ordinate regulation of Salmonella typhimurium invasion genes by environmental and regulatory factors is mediated by control of hilA expression. . Mol Microbiol 22:, 703–714. [CrossRef].[PubMed]
    [Google Scholar]
  4. Balsalobre C., Juárez A., Madrid C., Mouriño M., Prenafeta A., Muñoa F. J.. ( 1996;). Complementation of the hha mutation in Escherichia coli by the ymoA gene from Yersinia enterocolitica: dependence on the gene dosage. . Microbiology 142:, 1841–1846. [CrossRef].[PubMed]
    [Google Scholar]
  5. Baños R. C., Vivero A., Aznar S., García J., Pons M., Madrid C., Juárez A.. ( 2009;). Differential regulation of horizontally acquired and core genome genes by the bacterial modulator H-NS. . PLoS Genet 5:, e1000513. [CrossRef].[PubMed]
    [Google Scholar]
  6. Baxter M. A., Fahlen T. F., Wilson R. L., Jones B. D.. ( 2003;). HilE interacts with HilD and negatively regulates hilA transcription and expression of the Salmonella enterica serovar Typhimurium invasive phenotype. . Infect Immun 71:, 1295–1305. [CrossRef].[PubMed]
    [Google Scholar]
  7. Bolivar F., Rodriguez R. L., Greene P. J., Betlach M. C., Heyneker H. L., Boyer H. W., Crosa J. H., Falkow S.. ( 1977;). Construction and characterization of new cloning vehicles. II. A multipurpose cloning system. . Gene 2:, 95–113. [CrossRef].[PubMed]
    [Google Scholar]
  8. Browning D. F., Grainger D. C., Busby S. J.. ( 2010;). Effects of nucleoid-associated proteins on bacterial chromosome structure and gene expression. . Curr Opin Microbiol 13:, 773–780. [CrossRef].[PubMed]
    [Google Scholar]
  9. Bullas L. R., Ryu J. I.. ( 1983;). Salmonella typhimurium LT2 strains which are r− m+ for all three chromosomally located systems of DNA restriction and modification. . J Bacteriol 156:, 471–474.[PubMed]
    [Google Scholar]
  10. Bustamante V. H., Santana F. J., Calva E., Puente J. L.. ( 2001;). Transcriptional regulation of type III secretion genes in enteropathogenic Escherichia coli: Ler antagonizes H-NS-dependent repression. . Mol Microbiol 39:, 664–678. [CrossRef].[PubMed]
    [Google Scholar]
  11. Bustamante V. H., Martínez L. C., Santana F. J., Knodler L. A., Steele-Mortimer O., Puente J. L.. ( 2008;). HilD-mediated transcriptional cross-talk between SPI-1 and SPI-2. . Proc Natl Acad Sci U S A 105:, 14591–14596. [CrossRef].[PubMed]
    [Google Scholar]
  12. Cherepanov P. P., Wackernagel W.. ( 1995;). Gene disruption in Escherichia coli: TcR and KmR cassettes with the option of Flp-catalyzed excision of the antibiotic-resistance determinant. . Gene 158:, 9–14. [CrossRef].[PubMed]
    [Google Scholar]
  13. Chubiz J. E., Golubeva Y. A., Lin D., Miller L. D., Slauch J. M.. ( 2010;). FliZ regulates expression of the Salmonella pathogenicity island 1 invasion locus by controlling HilD protein activity in Salmonella enterica serovar Typhimurium. . J Bacteriol 192:, 6261–6270. [CrossRef].[PubMed]
    [Google Scholar]
  14. Collazo C. M., Galán J. E.. ( 1997;). The invasion-associated type-III protein secretion system in Salmonella – a review. . Gene 192:, 51–59. [CrossRef].[PubMed]
    [Google Scholar]
  15. Dame R. T., Noom M. C., Wuite G. J.. ( 2006;). Bacterial chromatin organization by H-NS protein unravelled using dual DNA manipulation. . Nature 444:, 387–390. [CrossRef].[PubMed]
    [Google Scholar]
  16. Datsenko K. A., Wanner B. L.. ( 2000;). One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. . Proc Natl Acad Sci U S A 97:, 6640–6645. [CrossRef].[PubMed]
    [Google Scholar]
  17. Dorman C. J.. ( 2004;). H-NS: a universal regulator for a dynamic genome. . Nat Rev Microbiol 2:, 391–400. [CrossRef].[PubMed]
    [Google Scholar]
  18. Ellermeier C. D., Slauch J. M.. ( 2004;). RtsA coordinately regulates DsbA and the Salmonella pathogenicity island 1 type III secretion system. . J Bacteriol 186:, 68–79. [CrossRef].[PubMed]
    [Google Scholar]
  19. Ellermeier J. R., Slauch J. M.. ( 2007;). Adaptation to the host environment: regulation of the SPI1 type III secretion system in Salmonella enterica serovar Typhimurium. . Curr Opin Microbiol 10:, 24–29. [CrossRef].[PubMed]
    [Google Scholar]
  20. Ellermeier J. R., Slauch J. M.. ( 2008;). Fur regulates expression of the Salmonella pathogenicity island 1 type III secretion system through HilD. . J Bacteriol 190:, 476–486. [CrossRef].[PubMed]
    [Google Scholar]
  21. Ellermeier C. D., Janakiraman A., Slauch J. M.. ( 2002;). Construction of targeted single copy lac fusions using lambda Red and FLP-mediated site-specific recombination in bacteria. . Gene 290:, 153–161. [CrossRef].[PubMed]
    [Google Scholar]
  22. Ellermeier C. D., Ellermeier J. R., Slauch J. M.. ( 2005;). HilD, HilC and RtsA constitute a feed forward loop that controls expression of the SPI1 type three secretion system regulator hilA in Salmonella enterica serovar Typhimurium. . Mol Microbiol 57:, 691–705. [CrossRef].[PubMed]
    [Google Scholar]
  23. Elliott T., Geiduschek E. P.. ( 1984;). Defining a bacteriophage T4 late promoter: absence of a “−35” region. . Cell 36:, 211–219. [CrossRef].[PubMed]
    [Google Scholar]
  24. Ellison D. W., Miller V. L.. ( 2006;). H-NS represses inv transcription in Yersinia enterocolitica through competition with RovA and interaction with YmoA. . J Bacteriol 188:, 5101–5112. [CrossRef].[PubMed]
    [Google Scholar]
  25. Fahlen T. F., Wilson R. L., Boddicker J. D., Jones B. D.. ( 2001;). Hha is a negative modulator of transcription of hilA, the Salmonella enterica serovar Typhimurium invasion gene transcriptional activator. . J Bacteriol 183:, 6620–6629. [CrossRef].[PubMed]
    [Google Scholar]
  26. Falconi M., Colonna B., Prosseda G., Micheli G., Gualerzi C. O.. ( 1998;). Thermoregulation of Shigella and Escherichia coli EIEC pathogenicity. A temperature-dependent structural transition of DNA modulates accessibility of virF promoter to transcriptional repressor H-NS. . EMBO J 17:, 7033–7043. [CrossRef].[PubMed]
    [Google Scholar]
  27. Goosen N., van de Putte P.. ( 1995;). The regulation of transcription initiation by integration host factor. . Mol Microbiol 16:, 1–7. [CrossRef].[PubMed]
    [Google Scholar]
  28. Guzman L. M., Belin D., Carson M. J., Beckwith J.. ( 1995;). Tight regulation, modulation, and high-level expression by vectors containing the arabinose PBAD promoter. . J Bacteriol 177:, 4121–4130.[PubMed]
    [Google Scholar]
  29. Hommais F., Krin E., Laurent-Winter C., Soutourina O., Malpertuy A., Le Caer J. P., Danchin A., Bertin P.. ( 2001;). Large-scale monitoring of pleiotropic regulation of gene expression by the prokaryotic nucleoid-associated protein, H-NS. . Mol Microbiol 40:, 20–36. [CrossRef].[PubMed]
    [Google Scholar]
  30. Hulton C. S., Seirafi A., Hinton J. C., Sidebotham J. M., Waddell L., Pavitt G. D., Owen-Hughes T., Spassky A., Buc H., Higgins C. F.. ( 1990;). Histone-like protein H1 (H-NS), DNA supercoiling, and gene expression in bacteria. . Cell 63:, 631–642. [CrossRef].[PubMed]
    [Google Scholar]
  31. Jones B. D., Falkow S.. ( 1994;). Identification and characterization of a Salmonella typhimurium oxygen-regulated gene required for bacterial internalization. . Infect Immun 62:, 3745–3752.[PubMed]
    [Google Scholar]
  32. Krause H. M., Higgins N. P.. ( 1986;). Positive and negative regulation of the Mu operator by Mu repressor and Escherichia coli integration host factor. . J Biol Chem 261:, 3744–3752.[PubMed]
    [Google Scholar]
  33. Lee C. A., Jones B. D., Falkow S.. ( 1992;). Identification of a Salmonella typhimurium invasion locus by selection for hyperinvasive mutants. . Proc Natl Acad Sci U S A 89:, 1847–1851. [CrossRef].[PubMed]
    [Google Scholar]
  34. Liu Y., Chen H., Kenney L. J., Yan J.. ( 2010;). A divalent switch drives H-NS/DNA-binding conformations between stiffening and bridging modes. . Genes Dev 24:, 339–344. [CrossRef].[PubMed]
    [Google Scholar]
  35. López-Garrido J., Casadesús J.. ( 2010;). Regulation of Salmonella enterica pathogenicity island 1 by DNA adenine methylation. . Genetics 184:, 637–649. [CrossRef].[PubMed]
    [Google Scholar]
  36. Lucas R. L., Lee C. A.. ( 2001;). Roles of hilC and hilD in regulation of hilA expression in Salmonella enterica serovar Typhimurium. . J Bacteriol 183:, 2733–2745. [CrossRef].[PubMed]
    [Google Scholar]
  37. Madrid C., Nieto J. M., Paytubi S., Falconi M., Gualerzi C. O., Juárez A.. ( 2002;). Temperature- and H-NS-dependent regulation of a plasmid-encoded virulence operon expressing Escherichia coli hemolysin. . J Bacteriol 184:, 5058–5066. [CrossRef].[PubMed]
    [Google Scholar]
  38. Madrid C., Balsalobre C., García J., Juárez A.. ( 2007;). The novel Hha/YmoA family of nucleoid-associated proteins: use of structural mimicry to modulate the activity of the H-NS family of proteins. . Mol Microbiol 63:, 7–14. [CrossRef].[PubMed]
    [Google Scholar]
  39. Mangan M. W., Lucchini S., Danino V., Cróinín T. O., Hinton J. C., Dorman C. J.. ( 2006;). The integration host factor (IHF) integrates stationary-phase and virulence gene expression in Salmonella enterica serovar Typhimurium. . Mol Microbiol 59:, 1831–1847. [CrossRef].[PubMed]
    [Google Scholar]
  40. Marcus S. L., Brumell J. H., Pfeifer C. G., Finlay B. B.. ( 2000;). Salmonella pathogenicity islands: big virulence in small packages. . Microbes Infect 2:, 145–156. [CrossRef].[PubMed]
    [Google Scholar]
  41. Miller J. H.. ( 1992;). A Short Course in Bacterial Genetics. A Laboratory Manual and Handbook for Escherichia coli and Related Bacteria. Cold Spring Harbor, NY:: Cold Spring Harbor Laboratory;.
    [Google Scholar]
  42. Münch R., Hiller K., Grote A., Scheer M., Klein J., Schobert M., Jahn D.. ( 2005;). Virtual Footprint and prodoric: an integrative framework for regulon prediction in prokaryotes. . Bioinformatics 21:, 4187–4189. [CrossRef].[PubMed]
    [Google Scholar]
  43. Nieto J. M., Carmona M., Bolland S., Jubete Y., de la Cruz F., Juárez A.. ( 1991;). The hha gene modulates haemolysin expression in Escherichia coli. . Mol Microbiol 5:, 1285–1293. [CrossRef].[PubMed]
    [Google Scholar]
  44. Nieto J. M., Madrid C., Miquelay E., Parra J. L., Rodríguez S., Juárez A.. ( 2002;). Evidence for direct protein-protein interaction between members of the enterobacterial Hha/YmoA and H-NS families of proteins. . J Bacteriol 184:, 629–635. [CrossRef].[PubMed]
    [Google Scholar]
  45. Ogasawara H., Yamada K., Kori A., Yamamoto K., Ishihama A.. ( 2010;). Regulation of the Escherichia coli csgD promoter: interplay between five transcription factors. . Microbiology 156:, 2470–2483. [CrossRef].[PubMed]
    [Google Scholar]
  46. Olekhnovich I. N., Kadner R. J.. ( 2006;). Crucial roles of both flanking sequences in silencing of the hilA promoter in Salmonella enterica. . J Mol Biol 357:, 373–386. [CrossRef].[PubMed]
    [Google Scholar]
  47. Ono S., Goldberg M. D., Olsson T., Esposito D., Hinton J. C., Ladbury J. E.. ( 2005;). H-NS is a part of a thermally controlled mechanism for bacterial gene regulation. . Biochem J 391:, 203–213. [CrossRef].[PubMed]
    [Google Scholar]
  48. Sambrook J., Russell D. W.. ( 2001;). Molecular Cloning: a Laboratory Manual. Cold Spring Harbor, NY:: Cold Spring Harbor Laboratory;.
    [Google Scholar]
  49. Schechter L. M., Jain S., Akbar S., Lee C. A.. ( 2003;). The small nucleoid-binding proteins H-NS, HU, and Fis affect hilA expression in Salmonella enterica serovar Typhimurium. . Infect Immun 71:, 5432–5435. [CrossRef].[PubMed]
    [Google Scholar]
  50. Schmidt H., Hensel M.. ( 2004;). Pathogenicity islands in bacterial pathogenesis. . Clin Microbiol Rev 17:, 14–56. [CrossRef].[PubMed]
    [Google Scholar]
  51. Song M., Kim H. J., Kim E. Y., Shin M., Lee H. C., Hong Y., Rhee J. H., Yoon H., Ryu S. et al. ( 2004;). ppGpp-dependent stationary phase induction of genes on Salmonella pathogenicity island 1. . J Biol Chem 279:, 34183–34190. [CrossRef].[PubMed]
    [Google Scholar]
  52. Sternberg N. L., Maurer R.. ( 1991;). Bacteriophage-mediated generalized transduction in Escherichia coli and Salmonella typhimurium. . Methods Enzymol 204:, 18–43. [CrossRef].[PubMed]
    [Google Scholar]
  53. Stoebel D. M., Free A., Dorman C. J.. ( 2008;). Anti-silencing: overcoming H-NS-mediated repression of transcription in Gram-negative enteric bacteria. . Microbiology 154:, 2533–2545. [CrossRef].[PubMed]
    [Google Scholar]
  54. Stonehouse E., Kovacikova G., Taylor R. K., Skorupski K.. ( 2008;). Integration host factor positively regulates virulence gene expression in Vibrio cholerae. . J Bacteriol 190:, 4736–4748. [CrossRef].[PubMed]
    [Google Scholar]
  55. van Ulsen P., Hillebrand M., Zulianello L., van de Putte P., Goosen N.. ( 1996;). Integration host factor alleviates the H-NS-mediated repression of the early promoter of bacteriophage Mu. . Mol Microbiol 21:, 567–578. [CrossRef].[PubMed]
    [Google Scholar]
  56. Vivero A., Baños R. C., Mariscotti J. F., Oliveros J. C., García-del Portillo F., Juárez A., Madrid C.. ( 2008;). Modulation of horizontally acquired genes by the Hha-YdgT proteins in Salmonella enterica serovar Typhimurium. . J Bacteriol 190:, 1152–1156. [CrossRef].[PubMed]
    [Google Scholar]
  57. Walthers D., Carroll R. K., Navarre W. W., Libby S. J., Fang F. C., Kenney L. J.. ( 2007;). The response regulator SsrB activates expression of diverse Salmonella pathogenicity island 2 promoters and counters silencing by the nucleoid-associated protein H-NS. . Mol Microbiol 65:, 477–493. [CrossRef].[PubMed]
    [Google Scholar]
  58. Walthers D., Li Y., Liu Y., Anand G., Yan J., Kenney L. J.. ( 2011;). Salmonella enterica response regulator SsrB relieves H-NS silencing by displacing H-NS bound in polymerization mode and directly activates transcription. . J Biol Chem 286:, 1895–1902. [CrossRef].[PubMed]
    [Google Scholar]
  59. Williamson H. S., Free A.. ( 2005;). A truncated H-NS-like protein from enteropathogenic Escherichia coli acts as an H-NS antagonist. . Mol Microbiol 55:, 808–827. [CrossRef].[PubMed]
    [Google Scholar]
  60. Yanisch-Perron C., Vieira J., Messing J.. ( 1985;). Improved M13 phage cloning vectors and host strains: nucleotide sequences of the M13mp18 and pUC19 vectors. . Gene 33:, 103–119. [CrossRef].[PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.049197-0
Loading
/content/journal/micro/10.1099/mic.0.049197-0
Loading

Data & Media loading...

Supplements

vol. , part 9, pp. 2504 - 2514

Oligonucleotides used in this paper [PDF](75 KB)



PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error