1887

Abstract

Syntrophic oxidation of acetate, so-called reversed reductive acetogenesis, is one of the most important degradation steps in anaerobic digesters. However, little is known about the genetic diversity of the micro-organisms involved. Here we investigated the activity and composition of potentially acetate-oxidizing syntrophs using a combinatorial approach of flux measurement and transcriptional profiling of the formyltetrahydrofolate synthetase (FTHFS) gene, an ecological biomarker for reductive acetogenesis. During the operation of a thermophilic anaerobic digester, volatile fatty acids were mostly depleted, suggesting a high turnover rate for dissolved H, and hydrogenotrophic methanogens were the dominant archaeal members. Batch cultivation of the digester microbiota with C-labelled acetate indicated that syntrophic oxidation accounted for 13.1–21.3 % of methane production from acetate. FTHFS genes were transcribed in the absence of carbon monoxide, methoxylated compounds and inorganic electron acceptors other than CO, which is implicated in the activity of reversed reductive acetogenesis; however, expression itself does not distinguish whether biosynthesis or biodegradation is functioning. The mRNA- and DNA-based terminal RFLP and clone library analyses indicated that, out of nine FTHFS phylotypes detected, the FTHFS genes from the novel phylotypes I–IV in addition to the known syntroph (i.e. phylotype V) were specifically expressed. These transcripts arose from phylogenetically presumed homoacetogens. The results of this study demonstrate that hitherto unidentified phylotypes of homoacetogens are responsible for syntrophic acetate oxidation in an anaerobic digester.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.049189-0
2011-07-01
2020-10-19
Loading full text...

Full text loading...

/deliver/fulltext/micro/157/7/1980.html?itemId=/content/journal/micro/10.1099/mic.0.049189-0&mimeType=html&fmt=ahah

References

  1. Ahring B. K.. ( 1995;). Methanogenesis in thermophilic biogas reactors. Antonie van Leeuwenhoek67:91–102 [CrossRef][PubMed]
    [Google Scholar]
  2. Akutsu Y., Li Y.-Y., Harada H., Yu H.-Q.. ( 2009;). Effects of temperature and substrate concentration on biological hydrogen production from starch. Int J Hydrogen Energy34:2558–2566 [CrossRef]
    [Google Scholar]
  3. Akuzawa M., Hori T., Haruta S., Ueno Y., Ishii M., Igarashi Y.. ( 2011;). Distinctive responses of metabolically active microbiota to acidification in a thermophilic anaerobic digester. Microb Ecol61:595–605 [CrossRef][PubMed]
    [Google Scholar]
  4. Balk M., Weijma J., Stams A. J.. ( 2002;). Thermotoga lettingae sp. nov., a novel thermophilic, methanol-degrading bacterium isolated from a thermophilic anaerobic reactor. Int J Syst Evol Microbiol52:1361–1368 [CrossRef][PubMed]
    [Google Scholar]
  5. Cord-Ruwisch R., Mercz T. I., Hoh C.-Y., Strong G. E.. ( 1997;). Dissolved hydrogen concentration as an on-line control parameter for the automated operation and optimization of anaerobic digesters. Biotechnol Bioeng56:626–634 [CrossRef][PubMed]
    [Google Scholar]
  6. Drake H. L.. ( 1994;). Acetogenesis New York: Chapman & Hall;
    [Google Scholar]
  7. Drake H. L., Daniel S. L.. ( 2004;). Physiology of the thermophilic acetogen Moorella thermoacetica . Res Microbiol155:869–883 [CrossRef][PubMed]
    [Google Scholar]
  8. Dunbar J., Ticknor L. O., Kuske C. R.. ( 2001;). Phylogenetic specificity and reproducibility and new method for analysis of terminal restriction fragment profiles of 16S rRNA genes from bacterial communities. Appl Environ Microbiol67:190–197 [CrossRef][PubMed]
    [Google Scholar]
  9. Felsenstein J.. ( 2005;). phylip (phylogeny inference package). Distributed by the author. Department of Genome Sciences, University of Washington; Seattle, WA:
  10. Ferry J. G.. ( 1993;). Fermentation of acetate. Methanogenesis – Ecology, Physiology, Biochemistry & Genetics304–334 Ferry J. G.. New York: Chapman & Hall;
    [Google Scholar]
  11. Gebhardt A., Linder D., Thauer R. K.. ( 1983;). Anaerobic acetate oxidation to CO2 by Desulfobacter postgatei 2. Evidence from 14C-labelling studies for the operation of the citric acid cycle. Arch Microbiol136:230–233 [CrossRef]
    [Google Scholar]
  12. Goberna M., Insam H., Franke-Whittle I. H.. ( 2009;). Effect of biowaste sludge maturation on the diversity of thermophilic bacteria and archaea in an anaerobic reactor. Appl Environ Microbiol75:2566–2572 [CrossRef][PubMed]
    [Google Scholar]
  13. Hattori S.. ( 2008;). Syntrophic acetate-oxidizing microbes in methanogenic environments. Microbes Environ23:118–127 [CrossRef]
    [Google Scholar]
  14. Hattori S., Kamagata Y., Hanada S., Shoun H.. ( 2000;). Thermacetogenium phaeum gen. nov., sp. nov., a strictly anaerobic, thermophilic, syntrophic acetate-oxidizing bacterium. Int J Syst Evol Microbiol50:1601–1609[PubMed][CrossRef]
    [Google Scholar]
  15. Hattori S., Galushko A. S., Kamagata Y., Schink B.. ( 2005;). Operation of the CO dehydrogenase/acetyl coenzyme A pathway in both acetate oxidation and acetate formation by the syntrophically acetate-oxidizing bacterium Thermacetogenium phaeum . J Bacteriol187:3471–3476 [CrossRef][PubMed]
    [Google Scholar]
  16. Henderson G., Naylor G. E., Leahy S. C., Janssen P. H.. ( 2010;). Presence of novel, potentially homoacetogenic bacteria in the rumen as determined by analysis of formyltetrahydrofolate synthetase sequences from ruminants. Appl Environ Microbiol76:2058–2066 [CrossRef][PubMed]
    [Google Scholar]
  17. Hori T., Haruta S., Ueno Y., Ishii M., Igarashi Y.. ( 2006;a). Dynamic transition of a methanogenic population in response to the concentration of volatile fatty acids in a thermophilic anaerobic digester. Appl Environ Microbiol72:1623–1630 [CrossRef][PubMed]
    [Google Scholar]
  18. Hori T., Haruta S., Ueno Y., Ishii M., Igarashi Y.. ( 2006;b). Direct comparison of single-strand conformation polymorphism (SSCP) and denaturing gradient gel electrophoresis (DGGE) to characterize a microbial community on the basis of 16S rRNA gene fragments. J Microbiol Methods66:165–169 [CrossRef][PubMed]
    [Google Scholar]
  19. Hori T., Noll M., Igarashi Y., Friedrich M. W., Conrad R.. ( 2007;). Identification of acetate-assimilating microorganisms under methanogenic conditions in anoxic rice field soil by comparative stable isotope probing of RNA. Appl Environ Microbiol73:101–109 [CrossRef][PubMed]
    [Google Scholar]
  20. Hori T., Müller A., Igarashi Y., Conrad R., Friedrich M. W.. ( 2010;). Identification of iron-reducing microorganisms in anoxic rice paddy soil by 13C-acetate probing. ISME J4:267–278 [CrossRef][PubMed]
    [Google Scholar]
  21. Jetten M. S. M., Stams A. J. M., Zehnder A. J. B.. ( 1992;). Methanogenesis from acetate: a comparison of acetate metabolism in Methanothrix soehngenii and Methanosarcina spp. FEMS Microbiol Rev88:181–198 [CrossRef]
    [Google Scholar]
  22. Karakashev D., Batstone D. J., Trably E., Angelidaki I.. ( 2006;). Acetate oxidation is the dominant methanogenic pathway from acetate in the absence of Methanosaetaceae . Appl Environ Microbiol72:5138–5141 [CrossRef][PubMed]
    [Google Scholar]
  23. Krakat N., Westphal A., Schmidt S., Scherer P.. ( 2010;). Anaerobic digestion of renewable biomass: thermophilic temperature governs methanogen population dynamics. Appl Environ Microbiol76:1842–1850 [CrossRef][PubMed]
    [Google Scholar]
  24. Krumholz L. R., Bryant M. P.. ( 1985;). Clostridium pfennigii sp. nov. uses methoxyl groups of monobenzenoids and produces butyrate. Int J Syst Bacteriol35:454–456 [CrossRef]
    [Google Scholar]
  25. Kumar S., Nei M., Dudley J., Tamura K.. ( 2008;). mega: a biologist-centric software for evolutionary analysis of DNA and protein sequences. Brief Bioinform9:299–306 [CrossRef][PubMed]
    [Google Scholar]
  26. Leaphart A. B., Lovell C. R.. ( 2001;). Recovery and analysis of formyltetrahydrofolate synthetase gene sequences from natural populations of acetogenic bacteria. Appl Environ Microbiol67:1392–1395 [CrossRef][PubMed]
    [Google Scholar]
  27. Leaphart A. B., Friez M. J., Lovell C. R.. ( 2003;). Formyltetrahydrofolate synthetase sequences from salt marsh plant roots reveal a diversity of acetogenic bacteria and other bacterial functional groups. Appl Environ Microbiol69:693–696 [CrossRef][PubMed]
    [Google Scholar]
  28. Lee M. J., Zinder S. H.. ( 1988;a). Hydrogen partial pressures in a thermophilic acetate-oxidizing methanogenic coculture. Appl Environ Microbiol54:1457–1461[PubMed]
    [Google Scholar]
  29. Lee M. J., Zinder S. H.. ( 1988;b). Isolation and characterization of a thermophilic bacterium which oxidizes acetate in syntrophic association with a methanogen and which grows acetogenically on H2–CO2 . Appl Environ Microbiol54:124–129[PubMed]
    [Google Scholar]
  30. Lee M. J., Zinder S. H.. ( 1988;c). Carbon monoxide pathway enzyme activities in a thermophilic anaerobic bacterium grown acetogenically and in a syntrophic acetate-oxidizing coculture. Arch Microbiol150:513–518 [CrossRef]
    [Google Scholar]
  31. Lettinga G.. ( 1995;). Anaerobic digestion and wastewater treatment systems. Antonie van Leeuwenhoek67:3–28 [CrossRef][PubMed]
    [Google Scholar]
  32. Liu W. T., Marsh T. L., Cheng H., Forney L. J.. ( 1997;). Characterization of microbial diversity by determining terminal restriction fragment length polymorphisms of genes encoding 16S rRNA. Appl Environ Microbiol63:4516–4522[PubMed]
    [Google Scholar]
  33. Lovell C. R., Leaphart A. B.. ( 2005;). Community-level analysis: key genes of CO2-reductive acetogenesis. Methods Enzymol397:454–469 [CrossRef][PubMed]
    [Google Scholar]
  34. Lovley D. R., Klug M. J.. ( 1982;). Intermediary metabolism of organic matter in the sediments of a eutrophic lake. Appl Environ Microbiol43:552–560[PubMed]
    [Google Scholar]
  35. Ludwig W., Strunk O., Klugbauer S., Klugbauer N., Weizenegger M., Neumaier J., Bachleitner M., Schleifer K. H.. ( 1998;). Bacterial phylogeny based on comparative sequence analysis. Electrophoresis19:554–568 [CrossRef][PubMed]
    [Google Scholar]
  36. Ludwig W., Strunk O., Westram R., Richter L., Meier H., Yadhukumar, Buchner A., Lai T., Steppi S. et al. ( 2004;). arb: a software environment for sequence data. Nucleic Acids Res32:1363–1371 [CrossRef][PubMed]
    [Google Scholar]
  37. Lueders T., Friedrich M. W.. ( 2002;). Effects of amendment with ferrihydrite and gypsum on the structure and activity of methanogenic populations in rice field soil. Appl Environ Microbiol68:2484–2494 [CrossRef][PubMed]
    [Google Scholar]
  38. Mountfort D. O., Asher R. A.. ( 1978;). Changes in proportions of acetate and carbon dioxide used as methane precursors during the anaerobic digestion of bovine waste. Appl Environ Microbiol35:648–654[PubMed]
    [Google Scholar]
  39. Narihiro T., Sekiguchi Y.. ( 2007;). Microbial communities in anaerobic digestion processes for waste and wastewater treatment: a microbiological update. Curr Opin Biotechnol18:273–278 [CrossRef][PubMed]
    [Google Scholar]
  40. Noll M., Matthies D., Frenzel P., Derakshani M., Liesack W.. ( 2005;). Succession of bacterial community structure and diversity in a paddy soil oxygen gradient. Environ Microbiol7:382–395 [CrossRef][PubMed]
    [Google Scholar]
  41. Nüsslein B., Chin K. J., Eckert W., Conrad R.. ( 2001;). Evidence for anaerobic syntrophic acetate oxidation during methane production in the profundal sediment of subtropical Lake Kinneret (Israel). Environ Microbiol3:460–470 [CrossRef][PubMed]
    [Google Scholar]
  42. Pester M., Brune A.. ( 2006;). Expression profiles of fhs (FTHFS) genes support the hypothesis that spirochaetes dominate reductive acetogenesis in the hindgut of lower termites. Environ Microbiol8:1261–1270 [CrossRef][PubMed]
    [Google Scholar]
  43. Petersen S. P., Ahring B. K.. ( 1991;). Acetate oxidation in a thermophilic anaerobic sewage-sludge digestor: the importance of non-aceticlastic methanogenesis from acetate. FEMS Microbiol Ecol86:149–158 [CrossRef]
    [Google Scholar]
  44. Rothfuss F., Conrad R.. ( 1993;). Thermodynamics of methanogenic intermediary metabolism in littoral sediment of Lake Constance. FEMS Microbiol Ecol12:265–276 [CrossRef]
    [Google Scholar]
  45. Ryan P., Forbes C., McHugh S., O'Reilly C., Fleming G. T., Colleran E.. ( 2010;). Enrichment of acetogenic bacteria in high rate anaerobic reactors under mesophilic and thermophilic conditions. Water Res44:4261–4269 [CrossRef][PubMed]
    [Google Scholar]
  46. Salmassi T. M., Leadbetter J. R.. ( 2003;). Analysis of genes of tetrahydrofolate-dependent metabolism from cultivated spirochaetes and the gut community of the termite Zootermopsis angusticollis . Microbiology149:2529–2537 [CrossRef][PubMed]
    [Google Scholar]
  47. Sansone F. J., Martens C. S.. ( 1981;). Methane production from acetate and associated methane fluxes from anoxic coastal sediments. Science211:707–709 [CrossRef][PubMed]
    [Google Scholar]
  48. Schauder R., Widdel F., Fuchs G.. ( 1987;). Carbon assimilation pathways in sulfate-reducing bacteria II. Enzymes of a reductive citric acid cycle in the autotrophic Desulfobacter hydrogenophilus . Arch Microbiol148:218–225 [CrossRef]
    [Google Scholar]
  49. Schink B.. ( 1997;). Energetics of syntrophic cooperation in methanogenic degradation. Microbiol Mol Biol Rev61:262–280[PubMed]
    [Google Scholar]
  50. Schnürer A., Schink B., Svensson B. H.. ( 1996;). Clostridium ultunense sp. nov., a mesophilic bacterium oxidizing acetate in syntrophic association with a hydrogenotrophic methanogenic bacterium. Int J Syst Bacteriol46:1145–1152 [CrossRef][PubMed]
    [Google Scholar]
  51. Schnürer A., Svensson B. H., Schink B.. ( 1997;). Enzyme activities in and energetics of acetate metabolism by the mesophilic syntrophically acetate-oxidizing anaerobe Clostridium ultunense . FEMS Microbiol Lett154:331–336 [CrossRef]
    [Google Scholar]
  52. Schnürer A., Zellner G., Svensson B. H.. ( 1999;). Mesophilic syntrophic acetate oxidation during methane formation in biogas reactors. FEMS Microbiol Ecol29:249–261[CrossRef]
    [Google Scholar]
  53. Shigematsu T., Tang Y., Kobayashi T., Kawaguchi H., Morimura S., Kida K.. ( 2004;). Effect of dilution rate on metabolic pathway shift between aceticlastic and nonaceticlastic methanogenesis in chemostat cultivation. Appl Environ Microbiol70:4048–4052 [CrossRef][PubMed]
    [Google Scholar]
  54. Speece R. E.. ( 1996;). Anaerobic Biotechnology for Industrial Wastewaters Nashville, TN: Archae Press;
    [Google Scholar]
  55. Talbot G., Topp E., Palin M. F., Massé D. I.. ( 2008;). Evaluation of molecular methods used for establishing the interactions and functions of microorganisms in anaerobic bioreactors. Water Res42:513–537 [CrossRef][PubMed]
    [Google Scholar]
  56. Tamura K., Dudley J., Nei M., Kumar S.. ( 2007;). mega4: Molecular Evolutionary Genetics Analysis (mega) software version 4.0. Mol Biol Evol24:1596–1599 [CrossRef][PubMed]
    [Google Scholar]
  57. Thauer R. K.. ( 1988;). Citric-acid cycle, 50 years on. Modifications and an alternative pathway in anaerobic bacteria. Eur J Biochem176:497–508 [CrossRef][PubMed]
    [Google Scholar]
  58. Thompson J. D., Gibson T. J., Plewniak F., Jeanmougin F., Higgins D. G.. ( 1997;). The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res25:4876–4882 [CrossRef][PubMed]
    [Google Scholar]
  59. Ueno Y., Haruta S., Ishii M., Igarashi Y.. ( 2001;). Changes in product formation and bacterial community by dilution rate on carbohydrate fermentation by methanogenic microflora in continuous flow stirred tank reactor. Appl Microbiol Biotechnol57:65–73 [CrossRef][PubMed]
    [Google Scholar]
  60. Westerholm M., Roos S., Schnürer A.. ( 2010;). Syntrophaceticus schinkii gen. nov., sp. nov., an anaerobic, syntrophic acetate-oxidizing bacterium isolated from a mesophilic anaerobic filter. FEMS Microbiol Lett309:100–104[PubMed]
    [Google Scholar]
  61. Zehnder A. J. B., Stumm W.. ( 1988;). Geochemistry and biochemistry of anaerobic habitats. Biology of Anaerobic Microorganisms1–38 Zehnder A. J. B.. New York: Wiley Interscience;
    [Google Scholar]
  62. Zinder S. H.. ( 1994;). Syntrophic acetate oxidation and “reversible acetogenesis”. Acetogenesis387–415 Drake H. L.. New York: Chapman & Hall;
    [Google Scholar]
  63. Zinder S. H., Koch M.. ( 1984;). Non-aceticlastic methanogenesis from acetate: acetate oxidation by a thermophilic syntrophic coculture. Arch Microbiol138:263–272 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.049189-0
Loading
/content/journal/micro/10.1099/mic.0.049189-0
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error