1887

Abstract

is a facultative intracellular bacterial pathogen causing melioidosis, an often fatal infectious disease that is endemic in several tropical and subtropical areas around the world. We previously described a Ptk2 cell-based plaque assay screening system of transposon mutants that led to the identification of several novel virulence determinants. Using this approach we identified a mutant with reduced plaque formation in which the gene was disrupted. encodes a putative FK-506-binding protein (FKBP) representing a family of proteins that typically possess peptidyl-prolyl isomerase (PPIase) activity. A Δ mutant showed a severely impaired ability to resist intracellular killing and to replicate within primary macrophages. Complementation of the mutant fully restored its ability to grow intracellularly. Moreover, Δ was significantly attenuated in a murine model of infection. Structural modelling confirmed a modified FKBP fold of the -encoded protein but unlike virulence-associated FKBPs from other pathogenic bacteria, recombinant BPSL0918 protein did not possess PPIase activity . In accordance with this observation BPSL0918 exhibits several mutations in residues that have been proposed to mediate PPIase activity in other FKBPs. To our knowledge this FKBP represents the first example of this protein family which lacks PPIase activity but is important in intracellular infection of a bacterial pathogen.

Funding
This study was supported by the:
  • Ministry of Defence
  • Graduate College 840 (Deutsche Forschungsgemeinschaft)
Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.049163-0
2011-09-01
2024-04-18
Loading full text...

Full text loading...

/deliver/fulltext/micro/157/9/2629.html?itemId=/content/journal/micro/10.1099/mic.0.049163-0&mimeType=html&fmt=ahah

References

  1. Behrens S., Maier R., de Cock H., Schmid F. X., Gross C. A. ( 2001). The SurA periplasmic PPIase lacking its parvulin domains functions in vivo and has chaperone activity. EMBO J 20:285–294 [View Article][PubMed]
    [Google Scholar]
  2. Brandts J. F., Halvorson H. R., Brennan M. ( 1975). Consideration of the possibility that the slow step in protein denaturation reactions is due to cis-trans isomerism of proline residues. Biochemistry 14:4953–4963 [View Article][PubMed]
    [Google Scholar]
  3. Burtnick M. N., Woods D. E. ( 1999). Isolation of polymyxin B-susceptible mutants of Burkholderia pseudomallei and molecular characterization of genetic loci involved in polymyxin B resistance. Antimicrob Agents Chemother 43:2648–2656[PubMed]
    [Google Scholar]
  4. Ceymann A., Horstmann M., Ehses P., Schweimer K., Paschke A. K., Steinert M., Faber C. ( 2008). Solution structure of the Legionella pneumophila Mip-rapamycin complex. BMC Struct Biol 8:17 [View Article][PubMed]
    [Google Scholar]
  5. Choi K. H., Mima T., Casart Y., Rholl D., Kumar A., Beacham I. R., Schweizer H. P. ( 2008). Genetic tools for select-agent-compliant manipulation of Burkholderia pseudomallei . Appl Environ Microbiol 74:1064–1075 [View Article][PubMed]
    [Google Scholar]
  6. Cianciotto N. P., Eisenstein B. I., Mody C. H., Toews G. B., Engleberg N. C. ( 1989). A Legionella pneumophila gene encoding a species-specific surface protein potentiates initiation of intracellular infection. Infect Immun 57:1255–1262[PubMed]
    [Google Scholar]
  7. Cunningham F. X. Jr, Lafond T. P., Gantt E. ( 2000). Evidence of a role for LytB in the nonmevalonate pathway of isoprenoid biosynthesis. J Bacteriol 182:5841–5848 [View Article][PubMed]
    [Google Scholar]
  8. Currie B. J., Jacups S. P. ( 2003). Intensity of rainfall and severity of melioidosis, Australia. Emerg Infect Dis 9:1538–1542[PubMed] [CrossRef]
    [Google Scholar]
  9. Eske K., Breitbach K., Köhler J., Wongprompitak P., Steinmetz I. ( 2009). Generation of murine bone marrow derived macrophages in a standardised serum-free cell culture system. J Immunol Methods 342:13–19 [View Article][PubMed]
    [Google Scholar]
  10. Eswar N., Webb B., Marti-Renom M. A., Madhusudhan M. S., Eramian D., Shen M. Y., Pieper U., Sali A. ( 2006). Comparative protein structure modeling using Modeller. Curr Protoc Bioinformatics Chapter 5:Unit 5.6[PubMed]
    [Google Scholar]
  11. Fischer G., Aumüller T. ( 2003). Regulation of peptide bond cis/trans isomerization by enzyme catalysis and its implication in physiological processes. Rev Physiol Biochem Pharmacol 148:105–150 [View Article][PubMed]
    [Google Scholar]
  12. Fischer G., Bang H., Mech C. ( 1984). [Determination of enzymatic catalysis for the cis-trans-isomerization of peptide binding in proline-containing peptides]. Biomed Biochim Acta 43:1101–1111[PubMed]
    [Google Scholar]
  13. Fischer G., Bang H., Ludwig B., Mann K., Hacker J. ( 1992). Mip protein of Legionella pneumophila exhibits peptidyl-prolyl-cis/trans isomerase (PPlase) activity. Mol Microbiol 6:1375–1383 [View Article][PubMed]
    [Google Scholar]
  14. Gough J., Karplus K., Hughey R., Chothia C. ( 2001). Assignment of homology to genome sequences using a library of hidden Markov models that represent all proteins of known structure. J Mol Biol 313:903–919 [View Article][PubMed]
    [Google Scholar]
  15. Gustafson C. E., Kaul S., Ishiguro E. E. ( 1993). Identification of the Escherichia coli lytB gene, which is involved in penicillin tolerance and control of the stringent response. J Bacteriol 175:1203–1205[PubMed]
    [Google Scholar]
  16. Harding M. W., Galat A., Uehling D. E., Schreiber S. L. ( 1989). A receptor for the immunosuppressant FK506 is a cis-trans peptidyl-prolyl isomerase. Nature 341:758–760 [View Article][PubMed]
    [Google Scholar]
  17. Helbig J. H., König B., Knospe H., Bubert B., Yu C., Lück C. P., Riboldi-Tunnicliffe A., Hilgenfeld R., Jacobs E. et al. ( 2003). The PPIase active site of Legionella pneumophila Mip protein is involved in the infection of eukaryotic host cells. Biol Chem 384:125–137 [View Article][PubMed]
    [Google Scholar]
  18. Holden M. T., Titball R. W., Peacock S. J., Cerdeño-Tárraga A. M., Atkins T., Crossman L. C., Pitt T., Churcher C., Mungall K. et al. ( 2004). Genomic plasticity of the causative agent of melioidosis, Burkholderia pseudomallei . Proc Natl Acad Sci U S A 101:14240–14245 [View Article][PubMed]
    [Google Scholar]
  19. Horne S. M., Kottom T. J., Nolan L. K., Young K. D. ( 1997). Decreased intracellular survival of an fkpA mutant of Salmonella typhimurium Copenhagen. Infect Immun 65:806–810[PubMed]
    [Google Scholar]
  20. Hottenrott S., Schumann T., Plückthun A., Fischer G., Rahfeld J. U. ( 1997). The Escherichia coli SlyD is a metal ion-regulated peptidyl-prolyl cis/trans-isomerase. J Biol Chem 272:15697–15701 [View Article][PubMed]
    [Google Scholar]
  21. Ikura T., Ito N. ( 2007). Requirements for peptidyl-prolyl isomerization activity: a comprehensive mutational analysis of the substrate-binding cavity of FK506-binding protein 12. Protein Sci 16:2618–2625 [View Article][PubMed]
    [Google Scholar]
  22. Inglis T. J., Sagripanti J. L. ( 2006). Environmental factors that affect the survival and persistence of Burkholderia pseudomallei . Appl Environ Microbiol 72:6865–6875 [View Article][PubMed]
    [Google Scholar]
  23. Janowski B., Wöllner S., Schutkowski M., Fischer G. ( 1997). A protease-free assay for peptidyl prolyl cis/trans isomerases using standard peptide substrates. Anal Biochem 252:299–307 [View Article][PubMed]
    [Google Scholar]
  24. Justice S. S., Hunstad D. A., Harper J. R., Duguay A. R., Pinkner J. S., Bann J., Frieden C., Silhavy T. J., Hultgren S. J. ( 2005). Periplasmic peptidyl prolyl cis-trans isomerases are not essential for viability, but SurA is required for pilus biogenesis in Escherichia coli . J Bacteriol 187:7680–7686 [View Article][PubMed]
    [Google Scholar]
  25. Justice S. S., Lauer S. R., Hultgren S. J., Hunstad D. A. ( 2006). Maturation of intracellular Escherichia coli communities requires SurA. Infect Immun 74:4793–4800 [View Article][PubMed]
    [Google Scholar]
  26. Knappe T. A., Eckert B., Schaarschmidt P., Scholz C., Schmid F. X. ( 2007). Insertion of a chaperone domain converts FKBP12 into a powerful catalyst of protein folding. J Mol Biol 368:1458–1468 [View Article][PubMed]
    [Google Scholar]
  27. Kofron J. L., Kuzmic P., Kishore V., Colón-Bonilla E., Rich D. H. ( 1991). Determination of kinetic constants for peptidyl prolyl cis-trans isomerases by an improved spectrophotometric assay. Biochemistry 30:6127–6134 [View Article][PubMed]
    [Google Scholar]
  28. Köhler R., Fanghänel J., König B., Lüneberg E., Frosch M., Rahfeld J. U., Hilgenfeld R., Fischer G., Hacker J., Steinert M. ( 2003). Biochemical and functional analyses of the Mip protein: influence of the N-terminal half and of peptidylprolyl isomerase activity on the virulence of Legionella pneumophila . Infect Immun 71:4389–4397 [View Article][PubMed]
    [Google Scholar]
  29. Lazar S. W., Kolter R. ( 1996). SurA assists the folding of Escherichia coli outer membrane proteins. J Bacteriol 178:1770–1773[PubMed]
    [Google Scholar]
  30. Leuzzi R., Serino L., Scarselli M., Savino S., Fontana M. R., Monaci E., Taddei A., Fischer G., Rappuoli R., Pizza M. ( 2005). Ng-MIP, a surface-exposed lipoprotein of Neisseria gonorrhoeae, has a peptidyl-prolyl cis/trans isomerase (PPIase) activity and is involved in persistence in macrophages. Mol Microbiol 58:669–681 [View Article][PubMed]
    [Google Scholar]
  31. Lovell S. C., Davis I. W., Arendall W. B. III, de Bakker P. I., Word J. M., Prisant M. G., Richardson J. S., Richardson D. C. ( 2003). Structure validation by Cα geometry: ϕ, ψ and Cβ deviation. Proteins 50:437–450 [View Article][PubMed]
    [Google Scholar]
  32. Löw C., Neumann P., Tidow H., Weininger U., Haupt C., Friedrich-Epler B., Scholz C., Stubbs M. T., Balbach J. ( 2010). Crystal structure determination and functional characterization of the metallochaperone SlyD from Thermus thermophilus . J Mol Biol 398:375–390 [View Article][PubMed]
    [Google Scholar]
  33. Lundemose A. G., Kay J. E., Pearce J. H. ( 1993). Chlamydia trachomatis Mip-like protein has peptidyl-prolyl cis/trans isomerase activity that is inhibited by FK506 and rapamycin and is implicated in initiation of chlamydial infection. Mol Microbiol 7:777–783 [View Article][PubMed]
    [Google Scholar]
  34. Lupyan D., Leo-Macias A., Ortiz A. R. ( 2005). A new progressive-iterative algorithm for multiple structure alignment. Bioinformatics 21:3255–3263 [View Article][PubMed]
    [Google Scholar]
  35. Malik K. M. ( 1997). Chemometric and Quantum Mechanical Methods to Analyse CD Data London: University of London;
    [Google Scholar]
  36. Mizuguchi K., Deane C. M., Blundell T. L., Johnson M. S., Overington J. P. ( 1998). JOY: protein sequence-structure representation and analysis. Bioinformatics 14:617–623 [View Article][PubMed]
    [Google Scholar]
  37. Moro A., Ruiz-Cabello F., Fernández-Cano A., Stock R. P., González A. ( 1995). Secretion by Trypanosoma cruzi of a peptidyl-prolyl cis-trans isomerase involved in cell infection. EMBO J 14:2483–2490[PubMed]
    [Google Scholar]
  38. Ngauy V., Lemeshev Y., Sadkowski L., Crawford G. ( 2005). Cutaneous melioidosis in a man who was taken as a prisoner of war by the Japanese during World War II. J Clin Microbiol 43:970–972 [View Article][PubMed]
    [Google Scholar]
  39. Pilatz S., Breitbach K., Hein N., Fehlhaber B., Schulze J., Brenneke B., Eberl L., Steinmetz I. ( 2006). Identification of Burkholderia pseudomallei genes required for the intracellular life cycle and in vivo virulence. Infect Immun 74:3576–3586 [View Article][PubMed]
    [Google Scholar]
  40. Rotz L. D., Khan A. S., Lillibridge S. R., Ostroff S. M., Hughes J. M. ( 2002). Public health assessment of potential biological terrorism agents. Emerg Infect Dis 8:225–230 [View Article][PubMed]
    [Google Scholar]
  41. Rouvière P. E., Gross C. A. ( 1996). SurA, a periplasmic protein with peptidyl-prolyl isomerase activity, participates in the assembly of outer membrane porins. Genes Dev 10:3170–3182 [View Article][PubMed]
    [Google Scholar]
  42. Schreiber S. L. ( 1991). Chemistry and biology of the immunophilins and their immunosuppressive ligands. Science 251:283–287 [View Article][PubMed]
    [Google Scholar]
  43. Shi J., Blundell T. L., Mizuguchi K. ( 2001). FUGUE: sequence-structure homology recognition using environment-specific substitution tables and structure-dependent gap penalties. J Mol Biol 310:243–257 [View Article][PubMed]
    [Google Scholar]
  44. Suzuki R., Nagata K., Yumoto F., Kawakami M., Nemoto N., Furutani M., Adachi K., Maruyama T., Tanokura M. ( 2003). Three-dimensional solution structure of an archaeal FKBP with a dual function of peptidyl prolyl cis-trans isomerase and chaperone-like activities. J Mol Biol 328:1149–1160 [View Article][PubMed]
    [Google Scholar]
  45. Sydenham M., Douce G., Bowe F., Ahmed S., Chatfield S., Dougan G. ( 2000). Salmonella enterica serovar typhimurium surA mutants are attenuated and effective live oral vaccines. Infect Immun 68:1109–1115 [View Article][PubMed]
    [Google Scholar]
  46. Tormo A., Almirón M., Kolter R. ( 1990). surA, an Escherichia coli gene essential for survival in stationary phase. J Bacteriol 172:4339–4347[PubMed]
    [Google Scholar]
  47. Wagner C., Khan A. S., Kamphausen T., Schmausser B., Unal C., Lorenz U., Fischer G., Hacker J., Steinert M. ( 2007). Collagen binding protein Mip enables Legionella pneumophila to transmigrate through a barrier of NCI-H292 lung epithelial cells and extracellular matrix. Cell Microbiol 9:450–462 [View Article][PubMed]
    [Google Scholar]
  48. Watts K. M., Hunstad D. A. ( 2008). Components of SurA required for outer membrane biogenesis in uropathogenic Escherichia coli . PLoS ONE 3:e3359 [View Article][PubMed]
    [Google Scholar]
  49. Weininger U., Haupt C., Schweimer K., Graubner W., Kovermann M., Brüser T., Scholz C., Schaarschmidt P., Zoldak G., Schmid F. X. ( 2009). NMR solution structure of SlyD from Escherichia coli: spatial separation of prolyl isomerase and chaperone function. J Mol Biol 387:295–305 [View Article][PubMed]
    [Google Scholar]
  50. White N. J. ( 2003). Melioidosis. Lancet 361:1715–1722 [View Article][PubMed]
    [Google Scholar]
  51. Wintermeyer E., Ludwig B., Steinert M., Schmidt B., Fischer G., Hacker J. ( 1995). Influence of site specifically altered Mip proteins on intracellular survival of Legionella pneumophila in eukaryotic cells. Infect Immun 63:4576–4583[PubMed]
    [Google Scholar]
  52. Wülfing C., Lombardero J., Plückthun A. ( 1994). An Escherichia coli protein consisting of a domain homologous to FK506-binding proteins (FKBP) and a new metal binding motif. J Biol Chem 269:2895–2901[PubMed]
    [Google Scholar]
  53. Wuthiekanun V., Smith M. D., Dance D. A., Walsh A. L., Pitt T. L., White N. J. ( 1996). Biochemical characteristics of clinical and environmental isolates of Burkholderia pseudomallei . J Med Microbiol 45:408–412 [View Article][PubMed]
    [Google Scholar]
  54. Zhang J. W., Leach M. R., Zamble D. B. ( 2007). The peptidyl-prolyl isomerase activity of SlyD is not required for maturation of Escherichia coli hydrogenase. J Bacteriol 189:7942–7944 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.049163-0
Loading
/content/journal/micro/10.1099/mic.0.049163-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error