1887

Abstract

Surface layer (S-layer) proteins are crystalline arrays of proteinaceous subunits that are present as the outermost component of the cell wall in several species. The S-layer proteins have been shown to play a role in the antimicrobial activity of certain lactobacilli. However, it is not fully understood how the S-layer proteins exert this biological function. The aim of this study was to test the hypothesis that S-layer proteins antagonize Typhimurium (. Typhimurium) infection by protecting against F-actin cytoskeleton rearrangements and the activation of mitogen-activated protein kinase (MAPK) signalling pathways. Monolayer transepithelial electrical resistance (TER) was measured after . Typhimurium infection in Caco-2 cultured human intestinal cells with S-layer proteins. F-actin rearrangement and MAPK activation were also assessed by immunofluorescence staining or Western blotting. The results showed that when . Typhimurium was co-incubated with S-layer proteins, the Typhimurium-induced Caco-2 cell F-actin rearrangement was reduced, and the Typhimurium-induced TER decrease and interleukin 8 (IL-8) secretion were attenuated. Additionally, S-layer proteins could inhibit Typhimurium-induced phosphorylation of extracellular signal-regulated kinases 1 and 2 (ERK1/2), c-Jun amino-terminal kinase (JNK) and p38. This study indicates that S-layer proteins are able to inhibit . Typhimurium infection through blocking . Typhimurium-induced F-actin rearrangements and . Typhimurium-induced ERK1/2, JNK and p38 activation in Caco-2 cells. These data provide a rationale for the use of lactobacillus S-layer proteins as therapeutic and preventative agents, at least in infectious diarrhoea.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.049148-0
2011-09-01
2019-10-16
Loading full text...

Full text loading...

/deliver/fulltext/micro/157/9/2639.html?itemId=/content/journal/micro/10.1099/mic.0.049148-0&mimeType=html&fmt=ahah

References

  1. Antikainen J. , Anton L. , Sillanpää J. , Korhonen T. K. . ( 2002; ). Domains in the S-layer protein CbsA of Lactobacillus crispatus involved in adherence to collagens, laminin and lipoteichoic acids and in self-assembly. . Mol Microbiol 46:, 381–394. [CrossRef].[PubMed]
    [Google Scholar]
  2. Åvall-Jääskeläinen S. , Palva A. . ( 2005; ). Lactobacillus surface layers and their applications. . FEMS Microbiol Rev 29:, 511–529. [CrossRef].[PubMed]
    [Google Scholar]
  3. Banan A. , Zhang Y. , Losurdo J. , Keshavarzian A. . ( 2000; ). Carbonylation and disassembly of the F-actin cytoskeleton in oxidant induced barrier dysfunction and its prevention by epidermal growth factor and transforming growth factor α in a human colonic cell line. . Gut 46:, 830–837. [CrossRef].[PubMed]
    [Google Scholar]
  4. Banan A. , Keshavarzian A. , Zhang L. , Shaikh M. , Forsyth C. B. , Tang Y. , Fields J. Z. . ( 2007; ). NF-κB activation as a key mechanism in ethanol-induced disruption of the F-actin cytoskeleton and monolayer barrier integrity in intestinal epithelium. . Alcohol 41:, 447–460. [CrossRef].[PubMed]
    [Google Scholar]
  5. Bhavsar A. P. , Guttman J. A. , Finlay B. B. . ( 2007; ). Manipulation of host-cell pathways by bacterial pathogens. . Nature 449:, 827–834. [CrossRef].[PubMed]
    [Google Scholar]
  6. Boot H. J. , Kolen C. P. , van Noort J. M. , Pouwels P. H. . ( 1993; ). S-layer protein of Lactobacillus acidophilus ATCC 4356: purification, expression in Escherichia coli, and nucleotide sequence of the corresponding gene. . J Bacteriol 175:, 6089–6096.[PubMed]
    [Google Scholar]
  7. Cario E. , Rosenberg I. M. , Brandwein S. L. , Beck P. L. , Reinecker H. C. , Podolsky D. K. . ( 2000; ). Lipopolysaccharide activates distinct signaling pathways in intestinal epithelial cell lines expressing Toll-like receptors. . J Immunol 164:, 966–972.[PubMed] [CrossRef]
    [Google Scholar]
  8. Chen Z. , Gibson T. B. , Robinson F. , Silvestro L. , Pearson G. , Xu B. , Wright A. , Vanderbilt C. , Cobb M. H. . ( 2001; ). MAP kinases. . Chem Rev 101:, 2449–2476. [CrossRef].[PubMed]
    [Google Scholar]
  9. Chen X. , Xu J. , Shuai J. , Chen J. , Zhang Z. , Fang W. . ( 2007; ). The S-layer proteins of Lactobacillus crispatus strain ZJ001 is responsible for competitive exclusion against Escherichia coli O157 : H7 and Salmonella typhimurium . . Int J Food Microbiol 115:, 307–312. [CrossRef].[PubMed]
    [Google Scholar]
  10. Coconnier M. H. , Liévin V. , Lorrot M. , Servin A. L. . ( 2000; ). Antagonistic activity of Lactobacillus acidophilus LB against intracellular Salmonella enterica serovar Typhimurium infecting human enterocyte-like Caco-2/TC-7 cells. . Appl Environ Microbiol 66:, 1152–1157. [CrossRef].[PubMed]
    [Google Scholar]
  11. Eckmann L. , Kagnoff M. F. , Fierer J. . ( 1993; ). Epithelial cells secrete the chemokine interleukin-8 in response to bacterial entry. . Infect Immun 61:, 4569–4574.[PubMed]
    [Google Scholar]
  12. Galán J. E. . ( 1996; ). Molecular and cellular bases of Salmonella entry into host cells. . Curr Top Microbiol Immunol 209:, 43–60.[PubMed]
    [Google Scholar]
  13. Galán J. E. , Bliska J. B. . ( 1996; ). Cross-talk between bacterial pathogens and their host cells. . Annu Rev Cell Dev Biol 12:, 221–255. [CrossRef].[PubMed]
    [Google Scholar]
  14. Golowczyc M. A. , Mobili P. , Garrote G. L. , Abraham A. G. , De Antoni G. L. . ( 2007; ). Protective action of Lactobacillus kefir carrying S-layer protein against Salmonella enterica serovar Enteritidis. . Int J Food Microbiol 118:, 264–273. [CrossRef].[PubMed]
    [Google Scholar]
  15. Gordon M. A. , Graham S. M. , Walsh A. L. , Wilson L. , Phiri A. , Molyneux E. , Zijlstra E. E. , Heyderman R. S. , Hart C. A. , Molyneux M. E. . ( 2008; ). Epidemics of invasive Salmonella enterica serovar Enteritidis and S. enterica serovar Typhimurium infection associated with multidrug resistance among adults and children in Malawi. . Clin Infect Dis 46:, 963–969. [CrossRef].[PubMed]
    [Google Scholar]
  16. Helms M. , Ethelberg S. , Mølbak K. . DT104 Study Group ( 2005; ). International Salmonella Typhimurium DT104 infections, 1992–2001. . Emerg Infect Dis 11:, 859–867.[PubMed] [CrossRef]
    [Google Scholar]
  17. Hobbie S. , Chen L. M. , Davis R. J. , Galán J. E. . ( 1997; ). Involvement of mitogen-activated protein kinase pathways in the nuclear responses and cytokine production induced by Salmonella typhimurium in cultured intestinal epithelial cells. . J Immunol 159:, 5550–5559.[PubMed]
    [Google Scholar]
  18. Huang F. C. , Werne A. , Li Q. , Galyov E. E. , Walker W. A. , Cherayil B. J. . ( 2004; ). Cooperative interactions between flagellin and SopE2 in the epithelial interleukin-8 response to Salmonella enterica serovar Typhimurium infection. . Infect Immun 72:, 5052–5062. [CrossRef].[PubMed]
    [Google Scholar]
  19. Ishii K. J. , Koyama S. , Nakagawa A. , Coban C. , Akira S. . ( 2008; ). Host innate immune receptors and beyond: making sense of microbial infections. . Cell Host Microbe 3:, 352–363. [CrossRef].[PubMed]
    [Google Scholar]
  20. Jakava-Viljanen M. , Palva A. . ( 2007; ). Isolation of surface (S) layer protein carrying Lactobacillus species from porcine intestine and faeces and characterization of their adhesion properties to different host tissues. . Vet Microbiol 124:, 264–273. [CrossRef].[PubMed]
    [Google Scholar]
  21. Johnson-Henry K. C. , Hagen K. E. , Gordonpour M. , Tompkins T. A. , Sherman P. M. . ( 2007; ). Surface-layer protein extracts from Lactobacillus helveticus inhibit enterohaemorrhagic Escherichia coli O157 : H7 adhesion to epithelial cells. . Cell Microbiol 9:, 356–367. [CrossRef].[PubMed]
    [Google Scholar]
  22. Jones R. M. , Wu H. , Wentworth C. , Luo L. , Collier-Hyams L. , Neish A. S. . ( 2008; ). Salmonella AvrA coordinates suppression of host immune and apoptotic defenses via JNK pathway blockade. . Cell Host Microbe 3:, 233–244. [CrossRef].[PubMed]
    [Google Scholar]
  23. Kucharzik T. , Williams I. R. . ( 2002; ). Neutrophil migration across the intestinal epithelial barrier – summary of in vitro data and description of a new transgenic mouse model with doxycycline-inducible interleukin-8 expression in intestinal epithelial cells. . Pathobiology 70:, 143–149. [CrossRef].[PubMed]
    [Google Scholar]
  24. Kyriakis J. M. , Avruch J. . ( 2001; ). Mammalian mitogen-activated protein kinase signal transduction pathways activated by stress and inflammation. . Physiol Rev 81:, 807–869.[PubMed]
    [Google Scholar]
  25. Li P. , Ye X. , Wang Z. , Yu Q. , Yang Q. . ( 2010; ). [Effects of S-layer proteins from Lactobacillus against Salmonella typhimurium adhesion and invasion on Caco-2 cells]. . Wei Sheng Wu Xue Bao 50:, 1226–1231 (in Chinese).[PubMed]
    [Google Scholar]
  26. Li P. , Yin Y. , Yu Q. , Yang Q. . ( 2011; ). Lactobacillus acidophilus S-layer protein-mediated inhibition of Salmonella-induced apoptosis in Caco-2 cells. . Biochem Biophys Res Commun 409:, 142–147. [CrossRef].[PubMed]
    [Google Scholar]
  27. Ly K. T. , Casanova J. E. . ( 2007; ). Mechanisms of Salmonella entry into host cells. . Cell Microbiol 9:, 2103–2111. [CrossRef].[PubMed]
    [Google Scholar]
  28. Mumy K. L. , McCormick B. A. . ( 2009; ). The role of neutrophils in the event of intestinal inflammation. . Curr Opin Pharmacol 9:, 697–701. [CrossRef].[PubMed]
    [Google Scholar]
  29. Mynott T. L. , Crossett B. , Prathalingam S. R. . ( 2002; ). Proteolytic inhibition of Salmonella enterica serovar Typhimurium-induced activation of the mitogen-activated protein kinases ERK and JNK in cultured human intestinal cells. . Infect Immun 70:, 86–95. [CrossRef].[PubMed]
    [Google Scholar]
  30. Patel J. C. , Galán J. E. . ( 2005; ). Manipulation of the host actin cytoskeleton by Salmonella – all in the name of entry. . Curr Opin Microbiol 8:, 10–15. [CrossRef].[PubMed]
    [Google Scholar]
  31. Patel J. C. , Rossanese O. W. , Galán J. E. . ( 2005; ). The functional interface between Salmonella and its host cell: opportunities for therapeutic intervention. . Trends Pharmacol Sci 26:, 564–570. [CrossRef].[PubMed]
    [Google Scholar]
  32. Rakoff-Nahoum S. , Paglino J. , Eslami-Varzaneh F. , Edberg S. , Medzhitov R. . ( 2004; ). Recognition of commensal microflora by Toll-like receptors is required for intestinal homeostasis. . Cell 118:, 229–241. [CrossRef].[PubMed]
    [Google Scholar]
  33. Roux P. P. , Blenis J. . ( 2004; ). ERK and p38 MAPK-activated protein kinases: a family of protein kinases with diverse biological functions. . Microbiol Mol Biol Rev 68:, 320–344. [CrossRef].[PubMed]
    [Google Scholar]
  34. Rugbjerg H. , Wingstrand A. , Hald T. , Andersen J. S. , Lo Fo Wong D. M. , Korsgaard H. . ( 2004; ). Estimating the number of undetected multi-resistant Salmonella Typhimurium DT104 infected pig herds in Denmark. . Prev Vet Med 65:, 147–171. [CrossRef].[PubMed]
    [Google Scholar]
  35. Sánchez B. , Urdaci M. C. , Margolles A. . ( 2010; ). Extracellular proteins secreted by probiotic bacteria as mediators of effects that promote mucosa–bacteria interactions. . Microbiology 156:, 3232–3242. [CrossRef].[PubMed]
    [Google Scholar]
  36. Tafazoli F. , Magnusson K. E. , Zheng L. . ( 2003; ). Disruption of epithelial barrier integrity by Salmonella enterica serovar Typhimurium requires geranylgeranylated proteins. . Infect Immun 71:, 872–881. [CrossRef].[PubMed]
    [Google Scholar]
  37. Thomas C. M. , Versalovic J. . ( 2010; ). Probiotics-host communication: modulation of signaling pathways in the intestine. . Gut Microbes 1:, 148–163. [CrossRef].[PubMed]
    [Google Scholar]
  38. Vadillo-Rodríguez V. , Busscher H. J. , van der Mei H. C. , de Vries J. , Norde W. . ( 2005; ). Role of lactobacillus cell surface hydrophobicity as probed by AFM in adhesion to surfaces at low and high ionic strength. . Colloids Surf B Biointerfaces 41:, 33–41. [CrossRef].[PubMed]
    [Google Scholar]
  39. Veiga E. , Guttman J. A. , Bonazzi M. , Boucrot E. , Toledo-Arana A. , Lin A. E. , Enninga J. , Pizarro-Cerdá J. , Finlay B. B. et al. ( 2007; ). Invasive and adherent bacterial pathogens co-opt host clathrin for infection. . Cell Host Microbe 2:, 340–351. [CrossRef].[PubMed]
    [Google Scholar]
  40. Vizoso Pinto M. G. , Rodriguez Gómez M. , Seifert S. , Watzl B. , Holzapfel W. H. , Franz C. M. . ( 2009; ). Lactobacilli stimulate the innate immune response and modulate the TLR expression of HT29 intestinal epithelial cells in vitro. . Int J Food Microbiol 133:, 86–93. [CrossRef].[PubMed]
    [Google Scholar]
  41. Wang B. , Wei H. , Yuan J. , Li Q. , Li Y. , Li N. , Li J. . ( 2008; ). Identification of a surface protein from Lactobacillus reuteri JCM1081 that adheres to porcine gastric mucin and human enterocyte-like HT-29 cells. . Curr Microbiol 57:, 33–38. [CrossRef].[PubMed]
    [Google Scholar]
  42. Weston C. R. , Davis R. J. . ( 2007; ). The JNK signal transduction pathway. . Curr Opin Cell Biol 19:, 142–149. [CrossRef].[PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.049148-0
Loading
/content/journal/micro/10.1099/mic.0.049148-0
Loading

Data & Media loading...

Supplements

[PDF](36 KB)

PDF

[PDF](22 KB)

PDF

[PDF](271 KB)

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error