1887

Abstract

Surface layer (S-layer) proteins are crystalline arrays of proteinaceous subunits that are present as the outermost component of the cell wall in several species. The S-layer proteins have been shown to play a role in the antimicrobial activity of certain lactobacilli. However, it is not fully understood how the S-layer proteins exert this biological function. The aim of this study was to test the hypothesis that S-layer proteins antagonize Typhimurium (. Typhimurium) infection by protecting against F-actin cytoskeleton rearrangements and the activation of mitogen-activated protein kinase (MAPK) signalling pathways. Monolayer transepithelial electrical resistance (TER) was measured after . Typhimurium infection in Caco-2 cultured human intestinal cells with S-layer proteins. F-actin rearrangement and MAPK activation were also assessed by immunofluorescence staining or Western blotting. The results showed that when . Typhimurium was co-incubated with S-layer proteins, the Typhimurium-induced Caco-2 cell F-actin rearrangement was reduced, and the Typhimurium-induced TER decrease and interleukin 8 (IL-8) secretion were attenuated. Additionally, S-layer proteins could inhibit Typhimurium-induced phosphorylation of extracellular signal-regulated kinases 1 and 2 (ERK1/2), c-Jun amino-terminal kinase (JNK) and p38. This study indicates that S-layer proteins are able to inhibit . Typhimurium infection through blocking . Typhimurium-induced F-actin rearrangements and . Typhimurium-induced ERK1/2, JNK and p38 activation in Caco-2 cells. These data provide a rationale for the use of lactobacillus S-layer proteins as therapeutic and preventative agents, at least in infectious diarrhoea.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.049148-0
2011-09-01
2020-07-08
Loading full text...

Full text loading...

/deliver/fulltext/micro/157/9/2639.html?itemId=/content/journal/micro/10.1099/mic.0.049148-0&mimeType=html&fmt=ahah

References

  1. Antikainen J., Anton L., Sillanpää J., Korhonen T. K.. ( 2002;). Domains in the S-layer protein CbsA of Lactobacillus crispatus involved in adherence to collagens, laminin and lipoteichoic acids and in self-assembly. Mol Microbiol46:381–394 [CrossRef][PubMed]
    [Google Scholar]
  2. Åvall-Jääskeläinen S., Palva A.. ( 2005;). Lactobacillus surface layers and their applications. FEMS Microbiol Rev29:511–529 [CrossRef][PubMed]
    [Google Scholar]
  3. Banan A., Zhang Y., Losurdo J., Keshavarzian A.. ( 2000;). Carbonylation and disassembly of the F-actin cytoskeleton in oxidant induced barrier dysfunction and its prevention by epidermal growth factor and transforming growth factor α in a human colonic cell line. Gut46:830–837 [CrossRef][PubMed]
    [Google Scholar]
  4. Banan A., Keshavarzian A., Zhang L., Shaikh M., Forsyth C. B., Tang Y., Fields J. Z.. ( 2007;). NF-κB activation as a key mechanism in ethanol-induced disruption of the F-actin cytoskeleton and monolayer barrier integrity in intestinal epithelium. Alcohol41:447–460 [CrossRef][PubMed]
    [Google Scholar]
  5. Bhavsar A. P., Guttman J. A., Finlay B. B.. ( 2007;). Manipulation of host-cell pathways by bacterial pathogens. Nature449:827–834 [CrossRef][PubMed]
    [Google Scholar]
  6. Boot H. J., Kolen C. P., van Noort J. M., Pouwels P. H.. ( 1993;). S-layer protein of Lactobacillus acidophilus ATCC 4356: purification, expression in Escherichia coli, and nucleotide sequence of the corresponding gene. J Bacteriol175:6089–6096[PubMed]
    [Google Scholar]
  7. Cario E., Rosenberg I. M., Brandwein S. L., Beck P. L., Reinecker H. C., Podolsky D. K.. ( 2000;). Lipopolysaccharide activates distinct signaling pathways in intestinal epithelial cell lines expressing Toll-like receptors. J Immunol164:966–972[PubMed][CrossRef]
    [Google Scholar]
  8. Chen Z., Gibson T. B., Robinson F., Silvestro L., Pearson G., Xu B., Wright A., Vanderbilt C., Cobb M. H.. ( 2001;). MAP kinases. Chem Rev101:2449–2476 [CrossRef][PubMed]
    [Google Scholar]
  9. Chen X., Xu J., Shuai J., Chen J., Zhang Z., Fang W.. ( 2007;). The S-layer proteins of Lactobacillus crispatus strain ZJ001 is responsible for competitive exclusion against Escherichia coli O157 : H7 and Salmonella typhimurium . Int J Food Microbiol115:307–312 [CrossRef][PubMed]
    [Google Scholar]
  10. Coconnier M. H., Liévin V., Lorrot M., Servin A. L.. ( 2000;). Antagonistic activity of Lactobacillus acidophilus LB against intracellular Salmonella enterica serovar Typhimurium infecting human enterocyte-like Caco-2/TC-7 cells. Appl Environ Microbiol66:1152–1157 [CrossRef][PubMed]
    [Google Scholar]
  11. Eckmann L., Kagnoff M. F., Fierer J.. ( 1993;). Epithelial cells secrete the chemokine interleukin-8 in response to bacterial entry. Infect Immun61:4569–4574[PubMed]
    [Google Scholar]
  12. Galán J. E.. ( 1996;). Molecular and cellular bases of Salmonella entry into host cells. Curr Top Microbiol Immunol209:43–60[PubMed]
    [Google Scholar]
  13. Galán J. E., Bliska J. B.. ( 1996;). Cross-talk between bacterial pathogens and their host cells. Annu Rev Cell Dev Biol12:221–255 [CrossRef][PubMed]
    [Google Scholar]
  14. Golowczyc M. A., Mobili P., Garrote G. L., Abraham A. G., De Antoni G. L.. ( 2007;). Protective action of Lactobacillus kefir carrying S-layer protein against Salmonella enterica serovar Enteritidis. Int J Food Microbiol118:264–273 [CrossRef][PubMed]
    [Google Scholar]
  15. Gordon M. A., Graham S. M., Walsh A. L., Wilson L., Phiri A., Molyneux E., Zijlstra E. E., Heyderman R. S., Hart C. A., Molyneux M. E.. ( 2008;). Epidemics of invasive Salmonella enterica serovar Enteritidis and S. enterica serovar Typhimurium infection associated with multidrug resistance among adults and children in Malawi. Clin Infect Dis46:963–969 [CrossRef][PubMed]
    [Google Scholar]
  16. Helms M., Ethelberg S., Mølbak K.. DT104 Study Group ( 2005;). International Salmonella Typhimurium DT104 infections, 1992–2001. Emerg Infect Dis11:859–867[PubMed][CrossRef]
    [Google Scholar]
  17. Hobbie S., Chen L. M., Davis R. J., Galán J. E.. ( 1997;). Involvement of mitogen-activated protein kinase pathways in the nuclear responses and cytokine production induced by Salmonella typhimurium in cultured intestinal epithelial cells. J Immunol159:5550–5559[PubMed]
    [Google Scholar]
  18. Huang F. C., Werne A., Li Q., Galyov E. E., Walker W. A., Cherayil B. J.. ( 2004;). Cooperative interactions between flagellin and SopE2 in the epithelial interleukin-8 response to Salmonella enterica serovar Typhimurium infection. Infect Immun72:5052–5062 [CrossRef][PubMed]
    [Google Scholar]
  19. Ishii K. J., Koyama S., Nakagawa A., Coban C., Akira S.. ( 2008;). Host innate immune receptors and beyond: making sense of microbial infections. Cell Host Microbe3:352–363 [CrossRef][PubMed]
    [Google Scholar]
  20. Jakava-Viljanen M., Palva A.. ( 2007;). Isolation of surface (S) layer protein carrying Lactobacillus species from porcine intestine and faeces and characterization of their adhesion properties to different host tissues. Vet Microbiol124:264–273 [CrossRef][PubMed]
    [Google Scholar]
  21. Johnson-Henry K. C., Hagen K. E., Gordonpour M., Tompkins T. A., Sherman P. M.. ( 2007;). Surface-layer protein extracts from Lactobacillus helveticus inhibit enterohaemorrhagic Escherichia coli O157 : H7 adhesion to epithelial cells. Cell Microbiol9:356–367 [CrossRef][PubMed]
    [Google Scholar]
  22. Jones R. M., Wu H., Wentworth C., Luo L., Collier-Hyams L., Neish A. S.. ( 2008;). Salmonella AvrA coordinates suppression of host immune and apoptotic defenses via JNK pathway blockade. Cell Host Microbe3:233–244 [CrossRef][PubMed]
    [Google Scholar]
  23. Kucharzik T., Williams I. R.. ( 2002;). Neutrophil migration across the intestinal epithelial barrier – summary of in vitro data and description of a new transgenic mouse model with doxycycline-inducible interleukin-8 expression in intestinal epithelial cells. Pathobiology70:143–149 [CrossRef][PubMed]
    [Google Scholar]
  24. Kyriakis J. M., Avruch J.. ( 2001;). Mammalian mitogen-activated protein kinase signal transduction pathways activated by stress and inflammation. Physiol Rev81:807–869[PubMed]
    [Google Scholar]
  25. Li P., Ye X., Wang Z., Yu Q., Yang Q.. ( 2010;). [Effects of S-layer proteins from Lactobacillus against Salmonella typhimurium adhesion and invasion on Caco-2 cells]. Wei Sheng Wu Xue Bao50:1226–1231[PubMed]
    [Google Scholar]
  26. Li P., Yin Y., Yu Q., Yang Q.. ( 2011;). Lactobacillus acidophilus S-layer protein-mediated inhibition of Salmonella-induced apoptosis in Caco-2 cells. Biochem Biophys Res Commun409:142–147 [CrossRef][PubMed]
    [Google Scholar]
  27. Ly K. T., Casanova J. E.. ( 2007;). Mechanisms of Salmonella entry into host cells. Cell Microbiol9:2103–2111 [CrossRef][PubMed]
    [Google Scholar]
  28. Mumy K. L., McCormick B. A.. ( 2009;). The role of neutrophils in the event of intestinal inflammation. Curr Opin Pharmacol9:697–701 [CrossRef][PubMed]
    [Google Scholar]
  29. Mynott T. L., Crossett B., Prathalingam S. R.. ( 2002;). Proteolytic inhibition of Salmonella enterica serovar Typhimurium-induced activation of the mitogen-activated protein kinases ERK and JNK in cultured human intestinal cells. Infect Immun70:86–95 [CrossRef][PubMed]
    [Google Scholar]
  30. Patel J. C., Galán J. E.. ( 2005;). Manipulation of the host actin cytoskeleton by Salmonella – all in the name of entry. Curr Opin Microbiol8:10–15 [CrossRef][PubMed]
    [Google Scholar]
  31. Patel J. C., Rossanese O. W., Galán J. E.. ( 2005;). The functional interface between Salmonella and its host cell: opportunities for therapeutic intervention. Trends Pharmacol Sci26:564–570 [CrossRef][PubMed]
    [Google Scholar]
  32. Rakoff-Nahoum S., Paglino J., Eslami-Varzaneh F., Edberg S., Medzhitov R.. ( 2004;). Recognition of commensal microflora by Toll-like receptors is required for intestinal homeostasis. Cell118:229–241 [CrossRef][PubMed]
    [Google Scholar]
  33. Roux P. P., Blenis J.. ( 2004;). ERK and p38 MAPK-activated protein kinases: a family of protein kinases with diverse biological functions. Microbiol Mol Biol Rev68:320–344 [CrossRef][PubMed]
    [Google Scholar]
  34. Rugbjerg H., Wingstrand A., Hald T., Andersen J. S., Lo Fo Wong D. M., Korsgaard H.. ( 2004;). Estimating the number of undetected multi-resistant Salmonella Typhimurium DT104 infected pig herds in Denmark. Prev Vet Med65:147–171 [CrossRef][PubMed]
    [Google Scholar]
  35. Sánchez B., Urdaci M. C., Margolles A.. ( 2010;). Extracellular proteins secreted by probiotic bacteria as mediators of effects that promote mucosa–bacteria interactions. Microbiology156:3232–3242 [CrossRef][PubMed]
    [Google Scholar]
  36. Tafazoli F., Magnusson K. E., Zheng L.. ( 2003;). Disruption of epithelial barrier integrity by Salmonella enterica serovar Typhimurium requires geranylgeranylated proteins. Infect Immun71:872–881 [CrossRef][PubMed]
    [Google Scholar]
  37. Thomas C. M., Versalovic J.. ( 2010;). Probiotics-host communication: modulation of signaling pathways in the intestine. Gut Microbes1:148–163 [CrossRef][PubMed]
    [Google Scholar]
  38. Vadillo-Rodríguez V., Busscher H. J., van der Mei H. C., de Vries J., Norde W.. ( 2005;). Role of lactobacillus cell surface hydrophobicity as probed by AFM in adhesion to surfaces at low and high ionic strength. Colloids Surf B Biointerfaces41:33–41 [CrossRef][PubMed]
    [Google Scholar]
  39. Veiga E., Guttman J. A., Bonazzi M., Boucrot E., Toledo-Arana A., Lin A. E., Enninga J., Pizarro-Cerdá J., Finlay B. B. et al. ( 2007;). Invasive and adherent bacterial pathogens co-opt host clathrin for infection. Cell Host Microbe2:340–351 [CrossRef][PubMed]
    [Google Scholar]
  40. Vizoso Pinto M. G., Rodriguez Gómez M., Seifert S., Watzl B., Holzapfel W. H., Franz C. M.. ( 2009;). Lactobacilli stimulate the innate immune response and modulate the TLR expression of HT29 intestinal epithelial cells in vitro. Int J Food Microbiol133:86–93 [CrossRef][PubMed]
    [Google Scholar]
  41. Wang B., Wei H., Yuan J., Li Q., Li Y., Li N., Li J.. ( 2008;). Identification of a surface protein from Lactobacillus reuteri JCM1081 that adheres to porcine gastric mucin and human enterocyte-like HT-29 cells. Curr Microbiol57:33–38 [CrossRef][PubMed]
    [Google Scholar]
  42. Weston C. R., Davis R. J.. ( 2007;). The JNK signal transduction pathway. Curr Opin Cell Biol19:142–149 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.049148-0
Loading
/content/journal/micro/10.1099/mic.0.049148-0
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error